Low-burden, high-throughput brain-computer interfaces

低负担、高通量脑机接口

基本信息

  • 批准号:
    RGPIN-2019-06033
  • 负责人:
  • 金额:
    $ 4.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

CONTEXT A brain-computer interface (BCI) facilitates direct communication between the human brain and a computer and as such provides an attractive, potentially highly intuitive means of interacting with technology. Indeed, there has been a surge of interest in BCI applications in diverse industry sectors, including: home automation, military communications, gaming, geriatrics, assistive technology, and law enforcement, among others. However, current BCI technology requires arduous machine calibration and user training before a user's brain signals can be accurately recognized. Further, BCI-based communication remains slow compared to human face-to-face interaction. These challenges need to be overcome before the potential of BCIs can be broadly realized in society. OBJECTIVES The focus of my Discovery Grant is to tackle these challenges, specifically to: 1. Reduce the burden of machine calibration and user training, and 2. Increase the rate of BCI-based communication. PROPOSED RESEARCH To reduce the burden of calibration and training, we will investigate several technological approaches to accelerating machine and user learning. One method is to endow the BCI with a mathematical model developed for other users and to determine a way to efficiently adjust that model to a new user, while the user is also learning under the guidance of an expert. To increase the rate of BCI-based communication, we will deploy algorithms that understand the meaning of words spoken to a BCI user and subsequently present the BCI user with only messages that are relevant to the conversation at hand. We will develop a fast and intuitive way for the BCI user to select the desired message, simply by reading or imagining the words. ANTICIPATED OUTCOMES The proposed research will generate new ways for machines to learn to recognize changing brain patterns of a human user and new algorithms that help human users acquire the necessary skill to interact with technology via mental activity alone. This research will also yield a new and more efficient way to communicate with another human being via a BCI. Collectively, these outcomes will improve the practicality and usefulness of BCI technology. The proposed program will train 8 PhD students and up to 3 post-doctoral fellows. IMPORTANCE This research is of importance to Canadians living with severe disabilities. An easy-to-learn and fast BCI will open doors to educational attainment and eventual employment to those who are unable to communicate through speech or movements. This research will introduce to the BCI research field new theory and algorithms for concurrent machine and user learning, the notion of a BCI coach, evidence about the value of multisensory feedback and potentially new ways to detect user preference through brain signals. Finally, the program will assert a Canadian role in the burgeoning field of BCI by producing technologies that can be transferred to companies and BCI experts to lead the emerging sector.
脑机接口(BCI)促进了人脑和计算机之间的直接通信,因此提供了一种有吸引力的、潜在的高度直观的技术交互方式。事实上,在不同的行业领域,BCI应用的兴趣激增,包括:家庭自动化,军事通信,游戏,老年医学,辅助技术和执法等。然而,目前的BCI技术需要艰苦的机器校准和用户培训,才能准确识别用户的大脑信号。此外,与人类面对面的交互相比,基于BCI的通信仍然很慢。这些挑战需要克服之前,BCI的潜力可以在社会上广泛实现。我的发现补助金的重点是解决这些挑战,具体来说:1。减少机器校准和用户培训的负担,以及2.提高基于BCI的通信速率。为了减轻校准和训练的负担,我们将研究几种加速机器和用户学习的技术方法。一种方法是赋予BCI为其他用户开发的数学模型,并确定一种方法来有效地调整该模型以适应新用户,同时用户也在专家的指导下学习。为了提高基于BCI的通信速率,我们将部署算法,这些算法可以理解对BCI用户所说的话的含义,然后仅向BCI用户呈现与手头对话相关的消息。我们将为BCI用户开发一种快速直观的方法来选择所需的消息,只需通过阅读或想象的话。预期结果拟议的研究将产生新的方法,让机器学习识别人类用户不断变化的大脑模式,以及新的算法,帮助人类用户获得必要的技能,仅通过心理活动与技术进行交互。这项研究还将产生一种新的、更有效的方式,通过BCI与另一个人进行交流。总的来说,这些成果将提高BCI技术的实用性和有用性。该项目将培养8名博士生和3名博士后研究员。这项研究对患有严重残疾的加拿大人很重要。一个易于学习和快速的BCI将为那些无法通过语言或动作进行交流的人打开教育和最终就业的大门。这项研究将向BCI研究领域引入并行机器和用户学习的新理论和算法,BCI教练的概念,多感官反馈价值的证据以及通过大脑信号检测用户偏好的潜在新方法。最后,该计划将通过生产可以转让给公司和BCI专家的技术,在新兴的BCI领域发挥加拿大的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chau, Tom其他文献

Towards a system-paced near-infrared spectroscopy brain-computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state
  • DOI:
    10.1088/1741-2560/8/6/066004
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Power, Sarah D.;Kushki, Azadeh;Chau, Tom
  • 通讯作者:
    Chau, Tom
The effect of accelerometer location on the classification of single-site forearm mechanomyograms
  • DOI:
    10.1186/1475-925x-9-23
  • 发表时间:
    2010-06-10
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Alves, Natasha;Sejdic, Ervin;Chau, Tom
  • 通讯作者:
    Chau, Tom
Classifying Affective States Using Thermal Infrared Imaging of the Human Face
Stationarity distributions of mechanomyogram signals from isometric contractions of extrinsic hand muscles during functional grasping
An online three-class Transcranial Doppler ultrasound brain computer interface
  • DOI:
    10.1016/j.neures.2015.12.013
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Goyal, Anuja;Samadani, Ali-Akbar;Chau, Tom
  • 通讯作者:
    Chau, Tom

Chau, Tom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chau, Tom', 18)}}的其他基金

Low-burden, high-throughput brain-computer interfaces
低负担、高通量脑机接口
  • 批准号:
    RGPIN-2019-06033
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Low-burden, high-throughput brain-computer interfaces
低负担、高通量脑机接口
  • 批准号:
    RGPIN-2019-06033
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Low-burden, high-throughput brain-computer interfaces
低负担、高通量脑机接口
  • 批准号:
    RGPIN-2019-06033
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent systems for pediatric rehabilitation
儿科康复智能系统
  • 批准号:
    RGPIN-2014-06077
  • 财政年份:
    2018
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent systems for pediatric rehabilitation
儿科康复智能系统
  • 批准号:
    RGPIN-2014-06077
  • 财政年份:
    2017
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent systems for pediatric rehabilitation
儿科康复智能系统
  • 批准号:
    RGPIN-2014-06077
  • 财政年份:
    2016
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent systems for pediatric rehabilitation
儿科康复智能系统
  • 批准号:
    RGPIN-2014-06077
  • 财政年份:
    2015
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Unsupervised data-driven discovery for characterizing brain states
用于表征大脑状态的无监督数据驱动发现
  • 批准号:
    471066-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Engage Grants Program
NSERC CREATE Academic Rehabilitation Engineering (CARE) Training Program
NSERC CREATE 学术康复工程 (CARE) 培训计划
  • 批准号:
    370871-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Collaborative Research and Training Experience
Intelligent systems for pediatric rehabilitation
儿科康复智能系统
  • 批准号:
    RGPIN-2014-06077
  • 财政年份:
    2014
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

GPR39 as a Therapeutic Target in Aging-Related Vascular Cognitive Impairment and Dementia
GPR39 作为衰老相关血管认知障碍和痴呆的治疗靶点
  • 批准号:
    10734713
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Multiplex In-Solution Protein Array (MISPA) for high throughput, quantitative, early profiling of pathogen-induced head and neck
多重溶液内蛋白质芯片 (MISPA) 用于对病原体引起的头颈部进行高通量、定量、早期分析
  • 批准号:
    10713928
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Investigation of Filaggrin Gene Mutations among Latinx patients with Atopic Dermatitis
拉丁裔特应性皮炎患者丝聚蛋白基因突变的调查
  • 批准号:
    10740811
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Human Ocular Surface Electrophysiology
人眼表面电生理学
  • 批准号:
    10591279
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Botswana-UPenn: Research Consortium of HPV-Related Cervical Cancer in HIV Patient
博茨瓦纳-宾夕法尼亚大学:HIV 患者 HPV 相关宫颈癌研究联盟
  • 批准号:
    10834480
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Protease-activated-receptor-2 antagonists for treatment of migraine pain
蛋白酶激活受体 2 拮抗剂治疗偏头痛
  • 批准号:
    10602826
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Antifungals targeting pantothenate phosphorylation
靶向泛酸磷酸化的抗真菌药
  • 批准号:
    10696567
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Developing Gene Editing Therapeutics, Biodegradable Polymeric Delivery Vehicles, and High-throughput Platforms for the Treatment of Cystic Fibrosis
开发用于治疗囊性纤维化的基因编辑疗法、可生物降解的聚合物递送载体和高通量平台
  • 批准号:
    10836095
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Expanding early cancer detection with high throughput OCEANA - Ovarian Cancer Exosome Analysis with Nanoplasmonic Array
利用高通量 OCEANA 扩大早期癌症检测 - 使用纳米等离子体阵列进行卵巢癌外泌体分析
  • 批准号:
    10762488
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Multi-Omics for Chronic Kidney Disease
慢性肾脏病的多组学
  • 批准号:
    10744557
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了