Calculus of variations and optimal mass transportation: theory and applications

变分法和最佳公共交通:理论与应用

基本信息

  • 批准号:
    RGPIN-2019-06173
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This proposal is focused on two primary directions, partial differential equations with an emphasis on the calculus of variations, and the theory and applications of optimal mass transportation. Partial differential equations (PDEs) are of widespread interest because of their connection with phenomena in the physical world. Scientists and mathematicians have become actively involved in the study of countless problems modeled by PDEs.  I am mainly interested in the study of non-linear partial differential equations arising from natural sciences and differential geometry. In addition to developing new techniques, I apply tools from functional and convex analysis to study the qualitative properties of deterministic and stochastic partial differential equations. I also study the theory and application of optimal mass transportation. Optimal mass transport is a subject with a long history, with incredibly rich theory and applications, that defines robust metrics between probability distributions. The computation of optimal displacements between distributions through an associated transport plan makes this theory mainstream in several applicable fields including image processing, cancer detection, and statistical machine learning. It is a dynamic and growing area that has led to surprising new discoveries as well as novel interpretations of classical results. The purpose of this proposed research program is two-fold. First, to combine techniques from the calculus of variations and variational inequalities with newly established variational principles to study and analyze the existence, and qualitative properties of solutions for a large class of stochastic and deterministic partial differential equations arising from the natural sciences. Second, to characterize and scrutinize solutions of standard and martingale multi-marginal optimal mass transport problems given their abilities to provide accurate models for signal intensities and other data distributions. In addition to developing the mathematical theory of optimal transportation, I will also work on its various real-life applications. I expect the outcomes of this research to have significant impacts in the fields of partial differential equations, geometric measure theory, calculus of variations, stochastic PDEs, and applications of optimal mass transportation in other fields.
这一建议主要集中在两个主要方向,偏微分方程,重点是变分法,以及最优大众运输的理论和应用。偏微分方程(PDEs)由于与物理世界的现象有关而引起广泛的兴趣。科学家和数学家已经积极地参与到由偏微分方程建模的无数问题的研究中。我主要对自然科学和微分几何中的非线性偏微分方程的研究感兴趣。除了开发新技术外,我还应用泛函和凸分析的工具来研究确定性和随机偏微分方程的定性性质。我还研究了最优大众交通的理论和应用。最优质量输运是一门历史悠久的学科,有着极其丰富的理论和应用,它定义了概率分布之间的稳健度量。通过相关运输计划计算分布之间的最优位移使该理论在图像处理、癌症检测和统计机器学习等几个应用领域成为主流。这是一个充满活力和不断发展的领域,它带来了令人惊讶的新发现以及对经典结果的新解释。这项拟议的研究计划有两个目的。首先,将变分微积分和变分不等式的技术与新建立的变分原理结合起来,研究和分析自然科学中出现的一大类随机和确定性偏微分方程的存在性和解的定性性质。其次,考虑到标准和鞅多边际最优质量输运问题的解决方案能够为信号强度和其他数据分布提供准确的模型,表征和审查这些问题的解决方案。除了发展最优交通的数学理论外,我还将研究它在现实生活中的各种应用。我希望本研究的结果在偏微分方程、几何测量理论、变分法、随机偏微分方程以及最优大众运输的应用等领域产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Momeni, Abbas其他文献

Momeni, Abbas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Momeni, Abbas', 18)}}的其他基金

Calculus of variations and optimal mass transportation: theory and applications
变分法和最佳公共交通:理论与应用
  • 批准号:
    RGPIN-2019-06173
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Calculus of variations and optimal mass transportation: theory and applications
变分法和最佳公共交通:理论与应用
  • 批准号:
    RGPIN-2019-06173
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Calculus of variations and optimal mass transportation: theory and applications
变分法和最佳公共交通:理论与应用
  • 批准号:
    RGPIN-2019-06173
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
  • 批准号:
    31171277
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303525
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
  • 批准号:
    10749856
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
Perceptions, practices, autonomy levels and other variations among teachers who use AI teaching tools
使用人工智能教学工具的教师的认知、实践、自主水平和其他差异
  • 批准号:
    24K16628
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Impact of Genetic Variations on Muscle Physiology During Hominin Evolution
古人类进化过程中遗传变异对肌肉生理学的影响
  • 批准号:
    24K18206
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303524
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303526
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Understanding molecular variations of cattle genome by machine learning
通过机器学习了解牛基因组的分子变异
  • 批准号:
    2868882
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
Collaborative Research: CEDAR--A Whole-Atmospheric Perspective on Connections between Intra-Seasonal Variations in the Troposphere and Thermosphere
合作研究:CEDAR——对流层和热层季节内变化之间联系的整体大气视角
  • 批准号:
    2332817
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Studies on the effects of volcanic outgassing and variations in solar UV intensity on Venusian climate
火山放气和太阳紫外线强度变化对金星气候影响的研究
  • 批准号:
    23KJ0201
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Energy harvesting by indoor ambient thermal variations
通过室内环境温度变化收集能量
  • 批准号:
    23K03706
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了