Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
基本信息
- 批准号:RGPIN-2019-06264
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fatigue accounts for at least 90 percent of all service failures of components subjected to cyclic loading, as experienced by automobiles, aircraft, compressors, pumps, turbines, etc. Traditionally, engineers and researchers have to perform testing to determine a material's fatigue property, which results in high costs in time and money, thus prolonging the development cycle in material and component design for mechanical/structural systems. Recent research has reported that the low cycle fatigue (LCF) life of a material can be formulated in terms of material's physical properties including Burgers vector, shear modulus and surface energy. High cycle fatigue (HCF) is, in essence, a process of microstructural LCF crack nucleation plus crack propagation. Enlightened by these understandings, a computational fatigue design approach is proposed in the present research, aiming to search for new high-temperature alloys with superior fatigue resistance. A microstructure-based numerical model combined with first-principles density functional theory (DFT) will be developed and then used to predict the crack nucleation life of polycrystalline metals for a wide spectrum of loading from LCF to HCF. Furthermore, utilizing the deformation mechanisms involving glide and climb of dislocations within grain interior and along grain boundaries, a holistic theoretical framework - the integrated creep-fatigue theory (ICFT) for high-temperature alloys will also be proposed in the present research. The theoretical model established based on the first cornerstone leads to constitutive laws encompassing all possible deformation mechanisms and that based on the second cornerstone describes the damage accumulation process leading to fracture, and thus defines the life under general loading conditions that involve a combination of fatigue, creep and thermomechanical fatigue. Using this theory, only limited laboratory-testing will be required for a new material development such that material behavior under complicated loading conditions can be linked to the fundamental deformation mechanisms. Once established, the proposed theory and model will speed up material development and application to meet the fast-growing technological demands and stringent environmental requirements in the 21st century and future. They also have a great implication in prognosis and health management of existing or newly designed mechanical systems, with accurate life prediction, offering tremendous savings in life cycle management. In addition to the benefits for the research field, the proposed research has also planned the training of Highly Qualified Personnel (HQP) with serious consideration of Equity, Diversity and Inclusion (EDI). The time and cost saving using this research outcomes to design new materials and maintain mechanical systems to meet continuously increasing requirements for the gas turbine industry will certainly benefit and contribute to the economy and society of Canada.
汽车、飞机、压缩机、泵、涡轮机等承受循环载荷的部件的所有使用故障中,疲劳至少占 90%。传统上,工程师和研究人员必须通过测试来确定材料的疲劳特性,这导致了高昂的时间和金钱成本,从而延长了机械/结构系统材料和部件设计的开发周期。最近的研究报告称,材料的低周疲劳 (LCF) 寿命可以根据材料的物理特性(包括伯格斯矢量、剪切模量和表面能)来计算。高周疲劳(HCF)本质上是微观结构LCF裂纹形核加裂纹扩展的过程。受这些理解的启发,本研究提出了一种计算疲劳设计方法,旨在寻找具有优异抗疲劳性能的新型高温合金。将开发基于微观结构的数值模型与第一原理密度泛函理论 (DFT) 相结合,然后用于预测从 LCF 到 HCF 的宽范围载荷下多晶金属的裂纹成核寿命。此外,利用涉及晶粒内部和沿晶界的位错滑移和攀爬的变形机制,本研究还将提出一个整体的理论框架——高温合金的集成蠕变疲劳理论(ICFT)。基于第一基石建立的理论模型导致涵盖所有可能的变形机制的本构定律,基于第二基石的理论模型描述了导致断裂的损伤累积过程,从而定义了涉及疲劳、蠕变和热机械疲劳组合的一般载荷条件下的寿命。利用这一理论,新材料的开发只需要有限的实验室测试,这样复杂载荷条件下的材料行为就可以与基本变形机制联系起来。一旦建立,所提出的理论和模型将加速材料的开发和应用,以满足21世纪和未来快速增长的技术需求和严格的环境要求。它们还对现有或新设计的机械系统的预测和健康管理具有重大影响,具有准确的寿命预测,可在生命周期管理中节省大量成本。除了对研究领域的好处外,拟议的研究还规划了高素质人才(HQP)的培训,并认真考虑了公平、多样性和包容性(EDI)。利用这项研究成果来设计新材料和维护机械系统,以满足燃气轮机行业不断增长的要求,节省时间和成本,这肯定会给加拿大的经济和社会带来好处和贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liu, Rong其他文献
Prevention of Local Tumor Recurrence Following Surgery Using Low-Dose Chemotherapeutic Polymer Films
- DOI:
10.1245/s10434-009-0856-z - 发表时间:
2010-04-01 - 期刊:
- 影响因子:3.7
- 作者:
Liu, Rong;Wolinsky, Jesse B.;Colson, Yolonda L. - 通讯作者:
Colson, Yolonda L.
Surface modification of UHMWPE/fabric composite membrane via self-polymerized polydopamine followed by mPEG-NH2 immobilization
通过自聚聚多巴胺和 mPEG-NH2 固定对 UHMWPE/织物复合膜进行表面改性
- DOI:
10.1002/app.46428 - 发表时间:
2018-07-10 - 期刊:
- 影响因子:3
- 作者:
Liu, Rong;Wang, Xinwei;Hu, Zuming - 通讯作者:
Hu, Zuming
The Construction of a Hydrophilic Inorganic Layer Enables Mechanochemically Robust Super Antifouling UHMWPE Composite Membrane Surfaces
- DOI:
10.3390/polym12030569 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:5
- 作者:
Liu, Rong;Liu, Shusen;Zhang, Guangyu - 通讯作者:
Zhang, Guangyu
Safety and Effectiveness of Rasburicase in the Control of Hyperuricemia in Pediatric Patients with Non-Hodgkin's Lymphoma and Acute Leukemia: An Open-Label, Single-Arm, Multi-center, Interventional Study.
- DOI:
10.1007/s40268-023-00420-y - 发表时间:
2023-06 - 期刊:
- 影响因子:3
- 作者:
Wang, Tianyou;Zhu, Xiaofan;Chen, Yumei;Shen, Shuhong;Tang, Yongmin;Zhang, Jingying;He, Yingyi;Zhang, Hui;Gao, Ju;Fang, Jianpei;Liu, Rong;Wu, Xiaoyan;Sun, Jinchuan;Zhang, Minlu - 通讯作者:
Zhang, Minlu
Early Prediction Model for Critical Illness of Hospitalized COVID-19 Patients Based on Machine Learning Techniques.
基于机器学习技术的住院COVID-19患者危重疾病早期预测模型
- DOI:
10.3389/fpubh.2022.880999 - 发表时间:
2022 - 期刊:
- 影响因子:5.2
- 作者:
Fu, Yacheng;Zhong, Weijun;Liu, Tao;Li, Jianmin;Xiao, Kui;Ma, Xinhua;Xie, Lihua;Jiang, Junyi;Zhou, Honghao;Liu, Rong;Zhang, Wei - 通讯作者:
Zhang, Wei
Liu, Rong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liu, Rong', 18)}}的其他基金
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
- 批准号:
RGPIN-2019-06264 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases
含钴多组分系统和 MAX 相的机械合金化辅助合成
- 批准号:
538050-2018 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Investigation of oxidation and creep resistance of nickel-based alloy with superalloy hardfacing and thermal barrier coating
高温合金堆焊和热障涂层镍基合金的氧化和抗蠕变性能研究
- 批准号:
500913-2016 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Investigation of oxidation and creep resistance of nickel-based alloy with superalloy hardfacing and thermal barrier coating
高温合金堆焊和热障涂层镍基合金的氧化和抗蠕变性能研究
- 批准号:
500913-2016 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases
含钴多组分系统和 MAX 相的机械合金化辅助合成
- 批准号:
538050-2018 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
- 批准号:
RGPIN-2019-06264 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Ceramic Shot-Peening of a Landing Gear Component
起落架部件的陶瓷喷丸
- 批准号:
538023-2019 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Engage Grants Program
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
- 批准号:
RGPIN-2019-06264 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Investigation of oxidation and creep resistance of nickel-based alloy with superalloy hardfacing and thermal barrier coating
高温合金堆焊和热障涂层镍基合金的氧化和抗蠕变性能研究
- 批准号:
500913-2016 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases
含钴多组分系统和 MAX 相的机械合金化辅助合成
- 批准号:
538050-2018 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
- 批准号:
RGPIN-2019-06264 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
- 批准号:
RGPIN-2019-06264 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
- 批准号:
RGPIN-2019-06264 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
QRM: Microstructural Quantification and Virtual Reconstruction of Polymer Matrix Composites within the Integrated Computational Materials Engineering (ICME) Approach
QRM:集成计算材料工程 (ICME) 方法中聚合物基复合材料的微观结构量化和虚拟重建
- 批准号:
1826232 - 财政年份:2018
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
Integrated Analytical-Computational Analysis of Microstructural Influences on Seismic Anisotropy
微观结构对地震各向异性影响的综合解析计算分析
- 批准号:
1118786 - 财政年份:2011
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
Material World Network: Theoretical, Computational and Experimental Studies of 3D Microstructural Evolution in Ultra-high Volume Fraction Coarsening System
材料世界网络:超高体积分数粗化系统中3D微观结构演化的理论、计算和实验研究
- 批准号:
43495629 - 财政年份:2007
- 资助金额:
$ 2.33万 - 项目类别:
Research Grants
Materials World Network: Collaborative Res.: Theoretical, Computational and Experimental Studies of 3D Microstructural Evolution in Ultra-high Volume Fraction Coarsening Systems
材料世界网络:协作研究:超高体积分数粗化系统中 3D 微观结构演化的理论、计算和实验研究
- 批准号:
0710484 - 财政年份:2007
- 资助金额:
$ 2.33万 - 项目类别:
Continuing Grant
Materials World Networ: Collaborative Research: Theoretical, Computational and Experimental Studies of 3D Microstructural Evolution in Ultra-high Volume Fraction Coarsening Systems
材料世界网络:协作研究:超高体积分数粗化系统中 3D 微观结构演化的理论、计算和实验研究
- 批准号:
0710483 - 财政年份:2007
- 资助金额:
$ 2.33万 - 项目类别:
Continuing Grant
NSF-EC Cooperative Activity in Computational Materials Research: Modeling Microstructural Evolution with Digital Materials
NSF-EC 计算材料研究合作活动:用数字材料模拟微观结构演化
- 批准号:
0503049 - 财政年份:2005
- 资助金额:
$ 2.33万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Strain Localization in Solid Materials-Microstructural Effects and Computational Aspects
美法合作研究:固体材料中的应变局部化-微观结构效应和计算方面
- 批准号:
9513043 - 财政年份:1996
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant