Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases

含钴多组分系统和 MAX 相的机械合金化辅助合成

基本信息

  • 批准号:
    538050-2018
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Mechanical alloying (MA) is a materials-processing method that involves the repeated welding, fracturing, and rewelding of a mixture of powder particles, generally in a high energy ball mill, to produce a controlled, very fine microstructure, which results in high performance of the final material. MA-assisted-synthesis is characterized by a combination of mechanical alloying the mixed powder to very fine structure and then sintering. In this research two categories of material will be synthesized utilizing the MA technique. The first is cobalt-containing multi-component system (MCS), which is designed based on the combined concept of cobalt-based superalloy and high-entropy alloy (HEA). The former is also known as Stellite alloy, displaying exceptional properties such as high temperature strength, corrosion, oxidation, wear and erosion resistance, due to the unique chemical composition. The latter is composed of at least five elements in equiatomic or near equiatomic composition, exhibiting various excellent properties such as high hardness, good ductility and high temperature stability, by introduction of extra entropy to stabilize the structure. Different from traditional HEAs, the proposed cobalt-containing MCS alloys still have Co as the major element alloying with Cr, W, Mo, Ni, Mn, etc., but Co content will be reduced compared to Stellite alloys, thus lowering the cost of the alloys. MAX phases are layered ternary carbides and nitrides, making property combination of metallic and ceramic materials, which are popularly employed in extreme environments. In this research, MAX phases, including Cr2AlC, Ti3SiC2, Ti3AlC2, Ti2AlC, and Ti2AlN, potentially for nuclear applications, will also be synthesized with MA to improve their performance by creating very fine grained microstructures. The MA mixed powders will be solidified via special sintering processes such as spark plasma sintering and laser cladding, which enable to produce very fine grained microstructures due to rapid heating and cooling. It is expected that these novel materials synthesized by the advanced process possess superior performance to the existing materials from conventional methods, becoming emerging advanced materials for various industrial applications.
机械合金化(MA)是一种材料加工方法,它涉及粉末颗粒混合物的反复焊接,断裂和再焊接,通常在高能球磨机中,以产生受控的,非常精细的微观结构,从而产生高性能的最终材料。ma辅助合成的特点是将混合粉末机械合金化成非常精细的结构,然后烧结。本研究将利用MA技术合成两类材料。第一类是基于钴基高温合金和高熵合金(HEA)相结合的概念设计的含钴多组分系统(MCS)。前者也被称为钨铬钴合金,由于其独特的化学成分,具有高温强度、耐腐蚀、抗氧化、耐磨和抗侵蚀等优异性能。后者是由至少五种元素以等原子或近等原子组成,通过引入额外的熵来稳定结构,表现出高硬度、良好的延展性和高温稳定性等各种优异性能。与传统HEAs不同的是,本文提出的含钴MCS合金仍以Co为主要元素,与Cr、W、Mo、Ni、Mn等元素合金化,但与钨铬钴合金相比,Co含量会有所降低,从而降低了合金的成本。MAX相是层状的三元碳化物和氮化物,使金属和陶瓷材料的性能结合,在极端环境中得到广泛应用。在这项研究中,MAX相,包括Cr2AlC, Ti3SiC2, Ti3AlC2, Ti2AlC和Ti2AlN,可能用于核应用,也将用MA合成,通过创建非常细粒度的微观结构来提高它们的性能。MA混合粉末将通过特殊的烧结工艺(如火花等离子烧结和激光熔覆)进行固化,由于快速加热和冷却,可以产生非常细粒度的微观结构。通过先进工艺合成的新型材料具有比传统方法制备的现有材料更优越的性能,有望成为各种工业应用的新兴先进材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liu, Rong其他文献

Prevention of Local Tumor Recurrence Following Surgery Using Low-Dose Chemotherapeutic Polymer Films
  • DOI:
    10.1245/s10434-009-0856-z
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Liu, Rong;Wolinsky, Jesse B.;Colson, Yolonda L.
  • 通讯作者:
    Colson, Yolonda L.
Surface modification of UHMWPE/fabric composite membrane via self-polymerized polydopamine followed by mPEG-NH2 immobilization
通过自聚聚多巴胺和 mPEG-NH2 固定对 UHMWPE/织物复合膜进行表面改性
  • DOI:
    10.1002/app.46428
  • 发表时间:
    2018-07-10
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Liu, Rong;Wang, Xinwei;Hu, Zuming
  • 通讯作者:
    Hu, Zuming
The Construction of a Hydrophilic Inorganic Layer Enables Mechanochemically Robust Super Antifouling UHMWPE Composite Membrane Surfaces
  • DOI:
    10.3390/polym12030569
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Liu, Rong;Liu, Shusen;Zhang, Guangyu
  • 通讯作者:
    Zhang, Guangyu
Safety and Effectiveness of Rasburicase in the Control of Hyperuricemia in Pediatric Patients with Non-Hodgkin's Lymphoma and Acute Leukemia: An Open-Label, Single-Arm, Multi-center, Interventional Study.
  • DOI:
    10.1007/s40268-023-00420-y
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Wang, Tianyou;Zhu, Xiaofan;Chen, Yumei;Shen, Shuhong;Tang, Yongmin;Zhang, Jingying;He, Yingyi;Zhang, Hui;Gao, Ju;Fang, Jianpei;Liu, Rong;Wu, Xiaoyan;Sun, Jinchuan;Zhang, Minlu
  • 通讯作者:
    Zhang, Minlu
Early Prediction Model for Critical Illness of Hospitalized COVID-19 Patients Based on Machine Learning Techniques.
基于机器学习技术的住院COVID-19患者危重疾病早期预测模型
  • DOI:
    10.3389/fpubh.2022.880999
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Fu, Yacheng;Zhong, Weijun;Liu, Tao;Li, Jianmin;Xiao, Kui;Ma, Xinhua;Xie, Lihua;Jiang, Junyi;Zhou, Honghao;Liu, Rong;Zhang, Wei
  • 通讯作者:
    Zhang, Wei

Liu, Rong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liu, Rong', 18)}}的其他基金

Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases
含钴多组分系统和 MAX 相的机械合金化辅助合成
  • 批准号:
    538050-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
Investigation of oxidation and creep resistance of nickel-based alloy with superalloy hardfacing and thermal barrier coating
高温合金堆焊和热障涂层镍基合金的氧化和抗蠕变性能研究
  • 批准号:
    500913-2016
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
Investigation of oxidation and creep resistance of nickel-based alloy with superalloy hardfacing and thermal barrier coating
高温合金堆焊和热障涂层镍基合金的氧化和抗蠕变性能研究
  • 批准号:
    500913-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases
含钴多组分系统和 MAX 相的机械合金化辅助合成
  • 批准号:
    538050-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Ceramic Shot-Peening of a Landing Gear Component
起落架部件的陶瓷喷丸
  • 批准号:
    538023-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Engage Grants Program
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of oxidation and creep resistance of nickel-based alloy with superalloy hardfacing and thermal barrier coating
高温合金堆焊和热障涂层镍基合金的氧化和抗蠕变性能研究
  • 批准号:
    500913-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

A strategy to exfoliate layered transition-metal borides into 2D nanocrystals (MBene) through alloying the transition-metal sites
通过过渡金属位点合金化将层状过渡金属硼化物剥离成二维纳米晶体(MBene)的策略
  • 批准号:
    24K08211
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the Structural Transformations of Aluminum Foil Anodes during Electrochemical De(alloying) for Sustainable Lithium-ion Batteries
了解可持续锂离子电池电化学脱(合金)过程中铝箔阳极的结构转变
  • 批准号:
    2321486
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases
含钴多组分系统和 MAX 相的机械合金化辅助合成
  • 批准号:
    538050-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
MRI: Acquisition of an Ultrasonic Atomization and Alloying Platform for Additive Manufacturing Research and Education
MRI:收购用于增材制造研究和教育的超声波雾化和合金化平台
  • 批准号:
    2216352
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Alloying of additive elements and their nanoparticle deposition based on the design of the interface between Ti alloys and oxide layers
基于钛合金与氧化层界面设计的添加元素合金化及其纳米颗粒沉积
  • 批准号:
    22H01831
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAS: Understanding the Role of External Constraint on Electrochemical (De)alloying Mechanisms
CAS:了解外部约束对电化学(脱)合金机制的作用
  • 批准号:
    2209202
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Improving the hydrogen embrittlement resistance of quench and tempered high strength steels used as oil country tubular goods with niobium alloying additions
添加铌合金提高油井管材用调质高强度钢的抗氢脆性能
  • 批准号:
    556549-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Alliance Grants
Hot-rolled high-strength steels with leaner alloying concepts
采用精简合金概念的热轧高强度钢
  • 批准号:
    538214-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
SBIR Phase I: Production of Low-Cost Ti Alloys by Direct Reduction and Alloying
SBIR第一阶段:通过直接还原和合金化生产低成本钛合金
  • 批准号:
    2051641
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Alloying for impurity tolerance
合金化以提高杂质耐受性
  • 批准号:
    2621673
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了