An Adaptive Feedback System for Agent and Human Learning

用于代理和人类学习的自适应反馈系统

基本信息

  • 批准号:
    RGPIN-2019-07014
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Studies of technological innovation show that most new ideas need constructive feedback to become successful. Currently, there are no user-adaptive feedback systems that can be embedded in any learning and ideation environment. My research aims to discover fundamental principles for user-adaptive feedback systems that provide constructive feedback and to design and implement a system to validate these principles. My ultimate research goal is to create a general-purpose feedback system that can be embedded into a structured (with known rules) or unstructured (with rules to be discovered) environment and can learn to extract the rules of that environment. The proposed research program builds on my NSERC-funded doctoral program devising 1) a reinforcement learning (RL) algorithm, ALeRT, which enabled agents in games to learn adaptively, and 2) a model of collaborative agent behaviours. It also builds on my postdoctoral research, when I blended artificial intelligence with education to develop an intelligent rule-based feedback system. I discovered the principle that learners who seek negative feedback perform better on tasks and standardized tests, learning more than those seeking favourable feedback. My short-term goal is to identify such principles by creating a user-adaptive feedback system that generates constructive feedback for a structured domain-knowledge content. My medium-term goal is to create a system that generates feedback for an unstructured domain-knowledge content. My long-term goal is to enable multiple agents to collaboratively solve problems. Two PhDs, 1 MSc and 1 undergraduate per year will be trained throughout this program. This research includes modeling and experimental streams in a well-rounded methodology to create user-adaptable feedback agents. First, I will devise an RL algorithm enabling agents to increase their learning rate in a structured environment. I will discover a utility function to evaluate an agent's actions following feedback and the agent's performance. I will extend my ALeRT algorithm, so agents can learn to prioritize feedback. Second, I will infer the rules of an unstructured environment. Based on deep RL techniques, the value function of each action would then be used to populate the action space and the rules of the system. Third, I will extend the multiagent collaborative behaviour model I developed to enable agents to exchange feedback in a scalable way to achieve a common goal. I will validate my approach by embedding the feedback system in a different environment (e.g., the UofA massive open online course, Problem Solving, Programming, and Video Games). The project will deepen our understanding and guide research on user-adaptive systems in which agents learn to improve their decision-making that is crucial in developing autonomous learners. It will also contribute significantly to training highly-qualified personnel for successful and innovative academic or industry careers in Canada.
对技术创新的研究表明,大多数新想法需要建设性的反馈才能成功。目前,还没有可以嵌入到任何学习和思维环境中的用户自适应反馈系统。我的研究旨在发现提供建设性反馈的用户自适应反馈系统的基本原则,并设计和实现一个系统来验证这些原则。我的最终研究目标是创建一个通用的反馈系统,该系统可以嵌入到结构化(具有已知规则)或非结构化(具有待发现的规则)环境中,并且能够学习从该环境中提取规则。拟议的研究计划建立在我的NSERC资助的博士项目的基础上,该项目设计了1)强化学习(RL)算法,ALERT,它使游戏中的代理能够自适应学习,以及2)协作代理行为的模型。它还建立在我的博士后研究基础上,当时我将人工智能与教育相结合,开发了一个基于规则的智能反馈系统。我发现了这样一个原则,寻求负面反馈的学习者在任务和标准化测试中表现更好,比寻求正面反馈的学习者学到的更多。我的短期目标是通过创建一个用户自适应的反馈系统来确定这些原则,该系统为结构化的领域-知识内容生成建设性的反馈。我的中期目标是创建一个为非结构化领域--知识内容--生成反馈的系统。我的长期目标是使多个代理能够协作解决问题。两名博士,每年一名硕士和一名本科生将在整个项目中接受培训。这项研究包括以完善的方法建立模型和实验流,以创建用户可适应的反馈代理。首先,我将设计一个RL算法,使代理能够在结构化环境中提高他们的学习速度。我将发现一个效用函数来评估代理的行为反馈和代理的表现。我将扩展我的警报算法,以便工程师可以学习排列反馈的优先级。其次,我将推断非结构化环境的规则。基于深度RL技术,每个动作的值函数将被用来填充动作空间和系统规则。第三,我将扩展我开发的多代理协作行为模型,使代理能够以可扩展的方式交换反馈,以实现共同的目标。我将通过在不同的环境中嵌入反馈系统来验证我的方法(例如,UofA大型在线公开课、问题解决、编程和视频游戏)。该项目将加深我们对用户适应系统的理解和指导研究,在该系统中,代理学习如何改进他们的决策,这对培养自主学习者至关重要。它还将为在加拿大成功和创新的学术或行业职业培训高素质人才作出重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cutumisu, Maria其他文献

Using Structural Equation Modeling to Examine the Relationship Between Preservice Teachers' Computational Thinking Attitudes and Skills
  • DOI:
    10.1109/te.2021.3105938
  • 发表时间:
    2021-10-12
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Cutumisu, Maria;Adams, Catherine;Lu, Chang
  • 通讯作者:
    Lu, Chang
Simulation-Based Summative Assessment of Neonatal Resuscitation Providers Using the RETAIN Serious Board Game-A Pilot Study
  • DOI:
    10.3389/fped.2020.00014
  • 发表时间:
    2020-01-31
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Ghoman, Simran K.;Cutumisu, Maria;Schmoelzer, Georg M.
  • 通讯作者:
    Schmoelzer, Georg M.
PROSPeCT: A Predictive Research Online System for Prostate Cancer Tasks
  • DOI:
    10.1200/cci.18.00144
  • 发表时间:
    2019-05-22
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Cutumisu, Maria;Vasquez, Catalina;Lewis, John D.
  • 通讯作者:
    Lewis, John D.
Growth Mindset Moderates the Effect of the Neonatal Resuscitation Program on Performance in a Computer-Based Game Training Simulation
  • DOI:
    10.3389/fped.2018.00195
  • 发表时间:
    2018-07-04
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Cutumisu, Maria;Brown, Matthew R. G.;Schmolzer, Georg M.
  • 通讯作者:
    Schmolzer, Georg M.
The relation between academic achievement and the spontaneous use of design-thinking strategies
  • DOI:
    10.1016/j.compedu.2020.103806
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    12
  • 作者:
    Cutumisu, Maria;Schwartz, Daniel L.;Lou, Nigel Mantou
  • 通讯作者:
    Lou, Nigel Mantou

Cutumisu, Maria的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cutumisu, Maria', 18)}}的其他基金

An Adaptive Feedback System for Agent and Human Learning
用于代理和人类学习的自适应反馈系统
  • 批准号:
    RGPIN-2019-07014
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
An Adaptive Feedback System for Agent and Human Learning
用于代理和人类学习的自适应反馈系统
  • 批准号:
    RGPIN-2019-07014
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
An Adaptive Feedback System for Agent and Human Learning
用于代理和人类学习的自适应反馈系统
  • 批准号:
    DGECR-2019-00094
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
An Adaptive Feedback System for Agent and Human Learning
用于代理和人类学习的自适应反馈系统
  • 批准号:
    RGPIN-2019-07014
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Generative Design Patterns for Computer Role-Playing Games
计算机角色扮演游戏的生成设计模式
  • 批准号:
    318675-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Generative Design Patterns for Computer Role-Playing Games
计算机角色扮演游戏的生成设计模式
  • 批准号:
    318675-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

An Adaptive Feedback System for Agent and Human Learning
用于代理和人类学习的自适应反馈系统
  • 批准号:
    RGPIN-2019-07014
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
An Adaptive Feedback System for Agent and Human Learning
用于代理和人类学习的自适应反馈系统
  • 批准号:
    RGPIN-2019-07014
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
An Adaptive Feedback System for Agent and Human Learning
用于代理和人类学习的自适应反馈系统
  • 批准号:
    DGECR-2019-00094
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
An Adaptive Feedback System for Agent and Human Learning
用于代理和人类学习的自适应反馈系统
  • 批准号:
    RGPIN-2019-07014
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a Novel Adaptive Machining Control System Using an Ultrasonic Feedback Loop
使用超声波反馈回路开发新型自适应加工控制系统
  • 批准号:
    131071
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Feasibility Studies
Development of adaptive auditory display for use in manual auditory feedback control system
开发用于手动听觉反馈控制系统的自适应听觉显示
  • 批准号:
    19760176
  • 财政年份:
    2007
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
BIOCOMPLEXITY: Bio-Feedback Basis of Self Organization in Planktonic Ecosystems Using Phaeocystis as a Model Complex Adaptive System
生物复杂性:浮游生态系统中自组织的生物反馈基础,使用褐囊藻作为复杂自适应系统模型
  • 批准号:
    0083381
  • 财政年份:
    2000
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Nonlinear System Design: Adaptive Feedback Linearization with Unmodeled Dynamics (Supplement: NSF-UC-NASA Workshop onNonlinear Control, Santa Barbara, CA., April 5-7, 1990)
非线性系统设计:具有未建模动力学的自适应反馈线性化(补充:NSF-UC-NASA 非线性控制研讨会,加利福尼亚州圣巴巴拉,1990 年 4 月 5-7 日)
  • 批准号:
    9196166
  • 财政年份:
    1991
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Nonlinear System Design: Adaptive Feedback Linearization with Unmodeled Dynamics (Supplement: NSF-UC-NASA Workshop onNonlinear Control, Santa Barbara, CA., April 5-7, 1990)
非线性系统设计:具有未建模动力学的自适应反馈线性化(补充:NSF-UC-NASA 非线性控制研讨会,加利福尼亚州圣巴巴拉,1990 年 4 月 5-7 日)
  • 批准号:
    8818166
  • 财政年份:
    1989
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Servo Motor Current Feedback Control to Optimize the System including Reduction Gear Dynamics by Using Adaptive Control Technique
伺服电机电流反馈控制通过使用自适应控制技术来优化包括减速齿轮动力学在内的系统
  • 批准号:
    61550193
  • 财政年份:
    1986
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了