Combining Fundamental Models with Data

将基本模型与数据相结合

基本信息

  • 批准号:
    RGPIN-2020-03901
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

New methods will be developed for combining fundamental models and data, leading to accurate chemical-process models with reduced experimental costs and shorter development times. In the longer-term, the research will contribute to development of digital twins as advanced tools for industrial operation. Students will receive valuable training in modeling and data analysis, preparing them for careers that contribute to process digitalization and development of greener processes. The proposed research focuses on two persistent gaps that make it difficult to develop effective fundamental models of chemical and biochemical processes. The first is that it is difficult to use prior knowledge to select optimal experimental conditions that result in reliable parameter estimates and accurate model predictions. Although routine process data may be freely available, informative new experiments required for fundamental-model building can be expensive. Companies need better tools to plan experiments so that accurate models can be built in a shorter time with less cost. The second is is that it is difficult to tune dynamic models for use in on-line monitoring and control. State estimators are available for updating states and parameters in models as new data become available. However, tuning of state estimators (based on measurement and model uncertainties) remains a difficult problem. We will address the first gap by developing improved sequential methods for Model-Based Design of Experiments (MBDOE). The new methods will permit MBDOE calculations even when limited data (or a large number of model parameters) results in a non-invertible Fisher information matrix. The non-invertibility problem will be addressed using Bayesian terms in the MBDOE objective functions. The proposed approach will be compared with current methods using case studies on i) production of bio-sourced polyethers, ii) CO2 hydrogenation for renewable fuels production and iii) acrylate/methacrylate copolymerization for low-solvent automotive coatings. We will address the second gap using new simultaneous methods to estimate model parameters and obtain uncertainty information for state-estimator tuning. Fundamental models will be augmented with new empirical stochastic terms and state equations to account for disturbances and model imperfections. Fundamental model parameters, model uncertainties and measurement-noise variances will be estimated from old batches of dynamic data using efficient maximum-likelihood and Bayesian algorithms. The proposed simultaneous method will be tested against existing techniques for tuning extended Kalman filters (EKFs) and related estimators wherein model parameters and noise covariances are estimated in separate steps. We hypothesize that more-reliable parameter and state estimates will result from the proposed simultaneous approach, leading to improved on-line model predictions. An industrial polyethylene reactor model will be used as a case study.
将开发结合基本模型和数据的新方法,从而在降低实验成本和缩短开发时间的情况下建立准确的化学过程模型。从长远来看,该研究将有助于发展数字双胞胎作为工业运营的先进工具。学生将接受建模和数据分析方面的宝贵培训,为过程数字化和绿色过程发展的职业生涯做好准备。提出的研究重点是两个持续的差距,这使得很难建立有效的化学和生化过程的基本模型。首先,很难使用先验知识来选择最优的实验条件,从而获得可靠的参数估计和准确的模型预测。虽然常规的过程数据可以免费获得,但建立基本模型所需的信息丰富的新实验可能是昂贵的。公司需要更好的工具来计划实验,以便在更短的时间内以更低的成本建立准确的模型。二是动态模型难以调优,难以用于在线监测和控制。状态估计器可用于在新数据可用时更新模型中的状态和参数。然而,状态估计器的调整(基于测量和模型的不确定性)仍然是一个难题。我们将通过开发改进的基于模型的实验设计(MBDOE)的顺序方法来解决第一个差距。新方法将允许MBDOE计算,即使有限的数据(或大量的模型参数)导致不可逆转的Fisher信息矩阵。不可逆性问题将使用MBDOE目标函数中的贝叶斯项来解决。该方法将与目前的方法进行比较,具体包括:1)生产生物源聚醚,2)生产可再生燃料的二氧化碳加氢,3)用于低溶剂汽车涂料的丙烯酸酯/甲基丙烯酸酯共聚。我们将使用新的同步方法来解决第二个差距,以估计模型参数并获得状态估计器调谐的不确定性信息。基本模型将增加新的经验随机项和状态方程,以解释干扰和模型缺陷。基本模型参数、模型不确定性和测量噪声方差将使用有效的最大似然和贝叶斯算法从旧批次的动态数据中估计。提出的同步方法将针对现有的调整扩展卡尔曼滤波器(ekf)和相关估计器的技术进行测试,其中模型参数和噪声协方差是在单独的步骤中估计的。我们假设更可靠的参数和状态估计将从提出的同步方法产生,导致改进的在线模型预测。一个工业聚乙烯反应器模型将被用作案例研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

McAuley, Kim其他文献

McAuley, Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('McAuley, Kim', 18)}}的其他基金

Combining Fundamental Models with Data
将基本模型与数据相结合
  • 批准号:
    RGPIN-2020-03901
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Combining Fundamental Models with Data
将基本模型与数据相结合
  • 批准号:
    RGPIN-2020-03901
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2016
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2015
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Development and Experimental Verification of Fundamental Models to Enable Implementation of Microwave-Assisted Freeze Drying
实现微波辅助冷冻干燥的基本模型的开发和实验验证
  • 批准号:
    10684767
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
Developing mathematical models for understanding the fundamental mechanics of the healthy brain under high-rate loading
开发数学模型以了解高速率负载下健康大脑的基本机制
  • 批准号:
    RGPIN-2018-05656
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Experimental Verification of Fundamental Models to Enable Implementation of Microwave-Assisted Freeze Drying
实现微波辅助冷冻干燥的基本模型的开发和实验验证
  • 批准号:
    10602061
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
Combining Fundamental Models with Data
将基本模型与数据相结合
  • 批准号:
    RGPIN-2020-03901
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Developing mathematical models for understanding the fundamental mechanics of the healthy brain under high-rate loading
开发数学模型以了解高速率负载下健康大脑的基本机制
  • 批准号:
    RGPIN-2018-05656
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Novel Models for Assessing Fundamental Mechanisms of Neuroma
开发评估神经瘤基本机制的新模型
  • 批准号:
    10507778
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
Developing Novel Models for Assessing Fundamental Mechanisms of Neuroma
开发评估神经瘤基本机制的新模型
  • 批准号:
    10261081
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
Collaborative Research: On Some Fundamental Computational Issues in Simulating Interaction Models
协作研究:模拟交互模型中的一些基本计算问题
  • 批准号:
    2012451
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Continuing Grant
Combining Fundamental Models with Data
将基本模型与数据相结合
  • 批准号:
    RGPIN-2020-03901
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Developing mathematical models for understanding the fundamental mechanics of the healthy brain under high-rate loading
开发数学模型以了解高速率负载下健康大脑的基本机制
  • 批准号:
    RGPIN-2018-05656
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了