Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes

聚合过程的数学建模和高级参数估计

基本信息

  • 批准号:
    RGPIN-2015-03668
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

When developing a mathematical model, modelers make interconnected decisions about the complexity and detail required, simplifying assumptions that will be made, and techniques that will be used to estimate model parameters. Appropriate decisions depend not only on the physics and chemistry of the system being modeled, but also on experimental information that is already known, costs of performing further experiments, and the  intended use of the model (e.g., process control, monitoring, scale-up or optimization). The long-term goals of my research program are: i) to build novel fundamental models for specific polymerization systems, and ii) to develop model-building tools that address key problems faced by researchers when developing and applying mechanistic models. Three projects are described in the proposal. In the first, a model will be developed to describe carbocationic homopolymerization of 4-(2-chloroisopropyl) styrene in semi-batch reactors. More importantly, copolymerization of isobutylene with this inimer (to produce tailored rubber molecules for biomedical applications) will be modeled.  The models will predict evolution of branching and molecular weight distribution in response to temperature, initial concentrations and feed rates. Data from the lab of J.E. Puskas (U. of Akron) will be used for parameter estimation and model testing. The proposed models will be a significant advance over current models because they will account for consumption of Lewis acid and for the exchange reaction that generates inimer. In the second project, maximum-likelihood methods for parameter estimation in stochastic differential equation models will be extended and tested. These methods and models are attractive for industrial reactors because they account for unknown initial conditions, data collected at irregular time intervals, and disturbances that influence future process operation. New objective functions will be developed to account for prior knowledge about model parameters. Diagnostic methods will be developed to determine which stochastic differential equations should include nonstationary random error terms so that the best possible model predictions can be obtained.  Estimability analysis methods are used to decide which parameters should be estimated in complex models using limited experimental data and which should be left at nominal values, so numerical problems can be avoided and reliable predictions obtained. The third project will extend popular estimability analysis techniques to account for operating conditions where good predictions are required, especially in the difficult case where the Fisher Information Matrix is non-invertible.  New methods for sequential design of experiments when some parameters cannot be estimated will also be explored. Students will be trained in all three projects and will develop skills desired in Canadian industry.
在开发数学模型时,建模人员会对所需的复杂性和细节做出相互关联的决定,简化将做出的假设,以及用于估计模型参数的技术。适当的决策不仅取决于被建模的系统的物理和化学,而且还取决于已知的实验信息、执行进一步实验的成本以及模型的预期用途(例如,过程控制、监控、放大或优化)。我的研究计划的长期目标是:i)为特定的聚合体系建立新的基本模型,ii)开发模型构建工具,解决研究人员在开发和应用机理模型时面临的关键问题。 提案中介绍了三个项目。在第一,将开发一个模型来描述碳阳离子均聚4-更重要的是,异丁烯与该引发剂单体的共聚反应(生产用于生物医学应用的定制橡胶分子)将被建模。这些模型将预测支化和分子量分布随温度的变化,初始浓度和进料速率。Puskas(U.提出的模型将是对现有模型的一个重大进步,因为它们将考虑刘易斯酸的消耗和产生inimer的交换反应。 在第二个项目中,将扩展和测试随机微分方程模型中参数估计的最大似然方法。这些方法和模型对于工业反应器是有吸引力的,因为它们考虑了未知的初始条件、以不规则的时间间隔收集的数据以及影响未来过程操作的扰动。将开发新的目标函数,以考虑有关模型参数的先验知识。 将开发诊断方法,以确定哪些随机微分方程应包括非平稳随机误差项,以便可以获得最佳的模型预测。 可估计性分析方法用于确定在复杂模型中应使用有限的实验数据估计哪些参数,哪些参数应保留在标称值,从而可以避免数值问题并获得可靠的预测。第三个项目将扩展流行的可估计性分析技术,以解释需要良好预测的操作条件,特别是在Fisher信息矩阵不可逆的困难情况下,还将探索在某些参数无法估计时进行序贯实验设计的新方法。学生将接受所有三个项目的培训,并将发展加拿大工业所需的技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

McAuley, Kim其他文献

McAuley, Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('McAuley, Kim', 18)}}的其他基金

Combining Fundamental Models with Data
将基本模型与数据相结合
  • 批准号:
    RGPIN-2020-03901
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Combining Fundamental Models with Data
将基本模型与数据相结合
  • 批准号:
    RGPIN-2020-03901
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Combining Fundamental Models with Data
将基本模型与数据相结合
  • 批准号:
    RGPIN-2020-03901
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
AMPS: Advanced Mathematical Algorithms for Model Reduction and Stochastic Modeling for the Emerging Power Grid
AMPS:用于新兴电网模型简化和随机建模的高级数学算法
  • 批准号:
    1734727
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Mathematical Modeling of Decision Making in Alcohol Research
酒精研究决策的高级数学模型
  • 批准号:
    9241939
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
  • 批准号:
    RGPIN-2015-03668
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced symmetry methods for PDEs and their applications in mathematical modeling
偏微分方程的高级对称方法及其在数学建模中的应用
  • 批准号:
    371614-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced symmetry methods for PDEs and their applications in mathematical modeling
偏微分方程的高级对称方法及其在数学建模中的应用
  • 批准号:
    371614-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced symmetry methods for PDEs and their applications in mathematical modeling
偏微分方程的高级对称方法及其在数学建模中的应用
  • 批准号:
    371614-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced symmetry methods for PDEs and their applications in mathematical modeling
偏微分方程的高级对称方法及其在数学建模中的应用
  • 批准号:
    371614-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了