Improving Efficiency in Organic Synthesis via Metal and Multimetal Catalysis
通过金属和多金属催化提高有机合成效率
基本信息
- 批准号:RGPIN-2020-04168
- 负责人:
- 金额:$ 8.81万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our objectives are to improve synthetic efficiency when making medicinally interesting scaffolds of bioactive products. Our research directly impacts diverse fields including pharmaceuticals, agrochemicals and materials chemistry. Graduates of the group are highly sought by these industries. Machine learning and design of experiments algorithms are making an increasing and valuable impact on organic synthesis. So too is automation, using rapid screening to reach the optimal set of conditions in a multivariable setting. Yet the invention of new reactions remains one of the essential steps where human ingenuity continues to play a central role. Doing so can allow exploration of previously unknown chemical space. The drugs of tomorrow will need novel molecular architectures and new methods are needed to access these structures. Our research program aims to invent new metal and multi-metal catalyzed reactions. Our projects to address the challenges of higher efficiency include: Multicatalysis: Chemists have been inventing metal catalysts that are broadly substrate-selective yet still reaction-specific. We have coined our approach multicomponent-multicatalyst reactions, (MC)2R, as a strategy to build up complex products from simple building blocks through "time-resolved" synthetic sequences each promoted by a different metal complex. We observe selectivity due to i) preferential binding between ligand and metal or ii) preferential rate increases of one metal-ligand complex over other possible complexes. Our prior work focused on expensive metals such as rhodium and palladium but our next generation (MC)2R will use base metals such as nickel, copper and cobalt. Furthermore, we will be building ligand scaffolds that can simultaneously bind more than one metal to create an "assembly line" ligand that could show rate acceleration. The ultimate goal is to use (MC)2R to find new reactions. Isomerization Reactions: The invention of reactions wherein all the atoms of the starting material(s) appear in the product are needed. We seek reactions that increase complexity but minimize waste. "Atom efficiency" is an important objective, particularly catalytic reactions that use less solvent. We recently found base metals including nickel catalyzes novel C-C & C-X bond-forming reactions and this is a key area outlined in the proposal. Domino Reactions: We will be developing enantioselective routes to useful carbo- and heterocyclic compounds based on domino reactions. We have recently reported copper catalyzed domino "click"-cyclization reactions and will be building on this emerging area. We have also found asymmetric borylcupration domino reactions and will explore the synthetic potential of this reaction in making heterocyclic scaffolds. Cobalt is an attractive metal for catalysis and we identified a domino process involving cyclization and C-H activation as key steps. The proposal outlines how we will explore the synthetic potential of this methodology.
我们的目标是在制造具有药用价值的生物活性产品支架时提高合成效率。我们的研究直接影响到制药、农用化学品和材料化学等多个领域。该集团的毕业生受到这些行业的高度追捧。机器学习和实验算法设计正在对有机合成产生越来越重要的影响。自动化也是如此,使用快速筛选在多变量设置中达到最佳条件集。然而,新反应的发明仍然是人类聪明才智继续发挥核心作用的重要步骤之一。这样做可以探索以前未知的化学空间。未来的药物将需要新的分子结构和新的方法来获取这些结构。我们的研究计划旨在发明新的金属和多金属催化反应。多重催化:化学家们一直在发明金属催化剂,这种催化剂具有广泛的底物选择性,但仍然具有反应特异性。我们创造了多组分-多催化剂反应(MC)2R方法,作为一种策略,通过“时间分辨”的合成序列,从简单的构建块构建复杂的产品,每个合成序列由不同的金属配合物促进。我们观察到选择性是由于i)配体和金属之间的优先结合或ii)一种金属配体配合物比其他可能的配合物的优先速率增加。我们之前的工作主要集中在昂贵的金属,如铑和钯,但我们的下一代(MC)2R将使用贱金属,如镍,铜和钴。此外,我们将构建可以同时结合多种金属的配体支架,以创建可以显示速率加速的“装配线”配体。最终目标是利用(MC)2R来发现新的反应。异构化反应:需要在产物中出现起始物质的所有原子的反应。我们寻求既增加复杂性又减少浪费的反应。“原子效率”是一个重要的目标,特别是使用较少溶剂的催化反应。我们最近发现包括镍在内的贱金属催化了新的C-C和C-X成键反应,这是提案中概述的关键领域。多米诺反应:我们将基于多米诺反应开发有用的碳环和杂环化合物的对映选择性途径。我们最近报道了铜催化的多米诺骨牌“点击”环化反应,并将在这一新兴领域继续发展。我们还发现了不对称硼铜化多米诺骨牌反应,并将探索该反应在制造杂环支架方面的合成潜力。钴是一种很有吸引力的催化金属,我们发现了一个多米诺骨牌过程,其中环化和碳氢活化是关键步骤。该建议概述了我们将如何探索这一方法的综合潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lautens, Mark其他文献
Development of an Intramolecular Aryne Ene Reaction and Application to the Formal Synthesis of (±)-Crinine
- DOI:
10.1021/ja306881u - 发表时间:
2012-09-19 - 期刊:
- 影响因子:15
- 作者:
Candito, David A.;Dobrovolsky, Dennis;Lautens, Mark - 通讯作者:
Lautens, Mark
Palladium-Catalyzed Domino Heck/Sulfination: Synthesis of Sulfonylated Hetero- and Carbocyclic Scaffolds Using DABCO-Bis(sulfur dioxide)
- DOI:
10.1021/acs.orglett.1c00716 - 发表时间:
2021-03-15 - 期刊:
- 影响因子:5.2
- 作者:
Bajohr, Jonathan;Diallo, Abdoul G.;Lautens, Mark - 通讯作者:
Lautens, Mark
Metal-Ligand Binding Interactions in Rhodium/Palladium-Catalyzed Synthesis of Dihydroquinolines
- DOI:
10.1021/jo502074s - 发表时间:
2014-12-19 - 期刊:
- 影响因子:3.6
- 作者:
Zhang, Lei;Panteleev, Jane;Lautens, Mark - 通讯作者:
Lautens, Mark
C-H Bond Functionalization in the Synthesis of Fused 1,2,3-Triazoles
- DOI:
10.1021/ol102342y - 发表时间:
2010-11-19 - 期刊:
- 影响因子:5.2
- 作者:
Panteleev, Jane;Geyer, Karolin;Lautens, Mark - 通讯作者:
Lautens, Mark
Exploiting the Chemistry of Strained Rings: Synthesis of Indoles via Domino Reaction of Aryl Iodides with 2H-Azirines
- DOI:
10.1021/ol100975b - 发表时间:
2010-08-06 - 期刊:
- 影响因子:5.2
- 作者:
Candito, David A.;Lautens, Mark - 通讯作者:
Lautens, Mark
Lautens, Mark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lautens, Mark', 18)}}的其他基金
Improving Efficiency in Organic Synthesis via Metal and Multimetal Catalysis
通过金属和多金属催化提高有机合成效率
- 批准号:
RGPIN-2020-04168 - 财政年份:2022
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving Efficiency in Organic Synthesis via Metal and Multimetal Catalysis
通过金属和多金属催化提高有机合成效率
- 批准号:
RGPIN-2020-04168 - 财政年份:2020
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving Efficiency in Organic Synthesis via Catalytic Reactions
通过催化反应提高有机合成效率
- 批准号:
RGPIN-2015-05553 - 财政年份:2019
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving Efficiency in Organic Synthesis via Catalytic Reactions
通过催化反应提高有机合成效率
- 批准号:
RGPIN-2015-05553 - 财政年份:2018
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving Efficiency in Organic Synthesis via Catalytic Reactions
通过催化反应提高有机合成效率
- 批准号:
RGPIN-2015-05553 - 财政年份:2017
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving Efficiency in Organic Synthesis via Catalytic Reactions
通过催化反应提高有机合成效率
- 批准号:
RGPIN-2015-05553 - 财政年份:2016
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving Efficiency in Organic Synthesis via Catalytic Reactions
通过催化反应提高有机合成效率
- 批准号:
RGPIN-2015-05553 - 财政年份:2015
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
New metal catalysed reactions and their utility in the synthesis of bioactive compounds
新型金属催化反应及其在生物活性化合物合成中的应用
- 批准号:
123652-2010 - 财政年份:2014
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
New metal catalysed reactions and their utility in the synthesis of bioactive compounds
新型金属催化反应及其在生物活性化合物合成中的应用
- 批准号:
123652-2010 - 财政年份:2013
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
New metal catalysed reactions and their utility in the synthesis of bioactive compounds
新型金属催化反应及其在生物活性化合物合成中的应用
- 批准号:
123652-2010 - 财政年份:2012
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Improving Efficiency in Organic Synthesis via Metal and Multimetal Catalysis
通过金属和多金属催化提高有机合成效率
- 批准号:
RGPIN-2020-04168 - 财政年份:2022
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving energy efficiency in organic-based fertiliser manufacturing for Net Zero UK
提高有机肥料制造的能源效率,实现英国净零排放
- 批准号:
10045258 - 财政年份:2022
- 资助金额:
$ 8.81万 - 项目类别:
Grant for R&D
Improving Efficiency in Organic Synthesis via Metal and Multimetal Catalysis
通过金属和多金属催化提高有机合成效率
- 批准号:
RGPIN-2020-04168 - 财政年份:2020
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving Efficiency in Organic Synthesis via Catalytic Reactions
通过催化反应提高有机合成效率
- 批准号:
RGPIN-2015-05553 - 财政年份:2019
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving Efficiency in Organic Synthesis via Catalytic Reactions
通过催化反应提高有机合成效率
- 批准号:
RGPIN-2015-05553 - 财政年份:2018
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Metal organic frameworks as catalysts for improving the efficiency of photocatalytic reactions 1=Energy 2=Catalysis
金属有机骨架作为催化剂提高光催化反应效率 1=能量 2=催化
- 批准号:
2011505 - 财政年份:2018
- 资助金额:
$ 8.81万 - 项目类别:
Studentship
Improving the efficiency of organic light emitting diodes at high luminance
提高有机发光二极管在高亮度下的效率
- 批准号:
475612-2015 - 财政年份:2017
- 资助金额:
$ 8.81万 - 项目类别:
Postgraduate Scholarships - Doctoral
Improving Efficiency in Organic Synthesis via Catalytic Reactions
通过催化反应提高有机合成效率
- 批准号:
RGPIN-2015-05553 - 财政年份:2017
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving Efficiency in Organic Synthesis via Catalytic Reactions
通过催化反应提高有机合成效率
- 批准号:
RGPIN-2015-05553 - 财政年份:2016
- 资助金额:
$ 8.81万 - 项目类别:
Discovery Grants Program - Individual
Improving the efficiency of organic light emitting diodes at high luminance
提高有机发光二极管在高亮度下的效率
- 批准号:
475612-2015 - 财政年份:2016
- 资助金额:
$ 8.81万 - 项目类别:
Postgraduate Scholarships - Doctoral