Resolutions of positivity in Hopf algebras

Hopf 代数中正性的解析

基本信息

  • 批准号:
    RGPIN-2020-04230
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

A central theme in mathematics is positivity: to explain the occurrence of positive numbers, especially when they are integers. This is because it often indicates an underlying structure explaining a phenomenon in the real world or other sciences such as computer science or quantum physics. Conversely, facets of an underlying structure can be calculated explicitly using a combinatorial rule where abstract objects are counted to give positive integers. In my research area of algebraic combinatorics, with new directions of theory, a number of long-standing positivity problems have recently been resolved. Hence now is the ideal time to attack some of the remaining ones. I will work towards resolving 3 of these. 1) Positivity in Schubert Calculus: Find a combinatorial rule for multiplying together two Schubert polynomials. These polynomials were introduced by Lascoux-Schutzenberger in 1982. 2) Positivity in chromatic symmetric functions: Prove that for certain claw-free graphs, the generalization of the chromatic polynomial, called the chromatic symmetric function, is a positive linear combination of elementary symmetric functions, as conjectured by Stanley-Stembridge in 1993. 3) Positivity in the space of diagonal harmonics: Find a combinatorial rule in terms of Schur functions for the bigraded Frobenius characteristic of the space of diagonal harmonics, introduced by Garsia-Haiman in the early 1990s. This will be achieved through a combination of investigating and applying under-explored tools and functions, such as fundamental slide polynomials, and forging and applying new areas of research, such as my discovery of quasisymmetric Schur functions with Haglund-Luoto-Mason. Junior researchers will be involved in all aspects of all of the projects from generating data in SAGE and Maple, to data analysis and forming conjectures, to proving results, and disseminating them with articles and talks. This will give them valuable training, and impactful research on which to found their careers. Solving any of these 3 problems would have major significance in my field, as they are all active areas of research. At a general scientific level, the resolutions will also impact related fields involving the underlying structures, such as string theory (related to Schubert polynomials through quantization), or the Clay Millennium Problem of resolving P vs NP (related to Schur functions through Geometric Complexity Theory). At a global level the resolutions of these 3 problems will further reinforce Canada's position at the global forefront of combinatorics, following such pioneers as Robinson and Tutte, and attracting attention and talent from around the world.
数学中的一个中心主题是积极性:解释正数的出现,特别是当它们是整数时。这是因为它通常表示解释真实的世界或其他科学(如计算机科学或量子物理学)中现象的潜在结构。相反,底层结构的方面可以使用组合规则显式计算,其中抽象对象被计数以给出正整数。在我的代数组合学研究领域,随着新的理论方向,一些长期存在的正性问题最近得到了解决。因此,现在是攻击剩下的一些国家的理想时机。我将努力解决其中的三个问题。1)舒伯特微积分中的正性:找到两个舒伯特多项式相乘的组合规则。这些多项式是由Lascoux-Schutzenberger在1982年推出的。2)色对称函数中的正性:证明对于某些无爪图,色多项式的推广,称为色对称函数,是初等对称函数的正线性组合,如Stanley Stembridge在1993年所证明的。3)对角调和空间中的正性:找到一个由Garsia-Haiman在20世纪90年代早期引入的对角调和空间的双阶Frobenius特征的舒尔函数的组合规则。这将通过结合研究和应用未开发的工具和函数(如基本滑动多项式),以及锻造和应用新的研究领域(如我与Haglund-Luoto-Mason发现的准对称Schur函数)来实现。初级研究人员将参与所有项目的各个方面,从在SAGE和Maple中生成数据,到数据分析和形成图表,再到证明结果,并通过文章和讲座传播它们。这将为他们提供有价值的培训,以及有影响力的研究,以找到他们的职业生涯。解决这三个问题中的任何一个都将在我的领域具有重大意义,因为它们都是活跃的研究领域。在一般的科学层面上,这些解决方案也会影响涉及底层结构的相关领域,例如弦理论(通过量子化与舒伯特多项式相关),或解决P vs NP的克莱千年问题(通过几何复杂性理论与舒尔函数相关)。在全球范围内,这三个问题的解决将进一步加强加拿大在组合学全球前沿的地位,继罗宾逊和图特等先驱之后,吸引来自世界各地的关注和人才。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

vanWilligenburg, Stephanie其他文献

vanWilligenburg, Stephanie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('vanWilligenburg, Stephanie', 18)}}的其他基金

Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
  • 批准号:
    RGPIN-2020-04230
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
  • 批准号:
    RGPIN-2020-04230
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Generalizations of Schur functions
Schur 函数的推广
  • 批准号:
    RGPIN-2015-03915
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Generalizations of Schur functions
Schur 函数的推广
  • 批准号:
    RGPIN-2015-03915
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Generalizations of Schur functions
Schur 函数的推广
  • 批准号:
    RGPIN-2015-03915
  • 财政年份:
    2016
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Generalizations of Schur functions
Schur 函数的推广
  • 批准号:
    RGPIN-2015-03915
  • 财政年份:
    2015
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Analytical properties of standard subspaces and reflection positivity in AQFT
AQFT 中标准子空间的分析性质和反射正性
  • 批准号:
    22KF0082
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The Alzheimer's Disease Tau Platform Clinical Trial
阿尔茨海默病 Tau 平台临床试验
  • 批准号:
    10655872
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Decoding Age Differences in Emotional Well-being and Positivity through Everyday Natural Conversations
通过日常自然对话解读情绪健康和积极性的年龄差异
  • 批准号:
    10667001
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
  • 批准号:
    23KJ0673
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
PET imaging of microtubules in cognitively normal and impaired older adults
认知正常和受损老年人的微管 PET 成像
  • 批准号:
    10915761
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
  • 批准号:
    RGPIN-2020-04230
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Matrix Theory with Applications to Positivity and Discrete Mathematics
矩阵理论及其在正性和离散数学中的应用
  • 批准号:
    RGPIN-2019-03934
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
LEAPS-MPS: Braids and Mapping Class Groups: Investigating Left-orders, Twisting, and Positivity
LEAPS-MPS:辫子和映射类组:研究左序、扭曲和正性
  • 批准号:
    2213451
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Local positivity and Diophantine applications
局部积极性和丢番图应用
  • 批准号:
    RGPIN-2018-05193
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了