Advanced developments of diffusion MRI tractography computational methods

扩散MRI纤维束成像计算方法的进展

基本信息

  • 批准号:
    RGPIN-2020-04818
  • 负责人:
  • 金额:
    $ 4.01万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The structural connectome is at the heart of modern human brain mapping and neuroinformatics. Neurodegenerative diseases such as Alzheimer's disease, developmental disorders such as autism, brain tumors and traumatic brain injuries such as concussions affect a large proportion of the Canadian population. It remains unknown how fiber connections in the white matter are altered, degenerated and damaged by these disorders. Diffusion magnetic resonance imaging (MRI) is the only non-invasive technique able to image the neural architecture of the white matter and better understand how the brain is wired. Diffusion MRI is thus a tool to measure the connectome at the macroscale, i.e. for short and long distances connections at the millimeter scale.  A crucial part of mapping the white matter connectome are measurements computed from dMRI tractography. Tractography is the computerized process of reconstructing white matter fiber bundles. Unfortunately, current tractography techniques do not control for invalid connections produced by algorithms, do not reconstruct the full extent of existing tracts, and is not a quantitative technique. As of today, the lack of accuracy in published works using tractography is well known but has mostly been overlooked because there are no public databases to validate techniques. There is mounting evidence that tractography errors can lead to wrong connectivity interpretations.  The main objective of my research program is to propose a diffusion MRI "tractography revolution". Tractography must be solved as a difficult ill-posed inverse problem, which needs all the external information possible to hope to solve the problem with high quality, accuracy and reproducibility. A first short-term objective is to propose a standardized & open database for tractography development evaluation of success. A second short-term objective is to incorporate advanced multi-dimensional (MD) mathematics and physics into the tractography process. A mid-term objective is to propose a computational framework that incorporates anatomical knowledge, microstructure information and multi-modality information inside the tracking process. Another mid to long-term objective is to develop machine learning techniques that learn from mistakes, learn what to track and where not to track, by incorporating the past information of successes and failures.    At the era of connectomics applications, it is urgent for neuroscience and medicine to address the fundamental limitations of tractography and structural brain mapping. The potential value of having new and quantitative tractography tools is extremely high. This will have a significant impact on neurosciences in Canada and worldwide because it is central to human brain mapping and connectome projects. It will help better characterize the widespread, large-scale neuronal networks that underlie several of the most complex human neurological disorders.
结构连接体是现代人脑图谱和神经信息学的核心。阿尔茨海默氏症等神经退行性疾病、自闭症等发育障碍、脑肿瘤和脑震荡等创伤性脑损伤影响着加拿大很大一部分人口。目前尚不清楚这些疾病是如何改变、退化和破坏白质中的纤维连接的。扩散磁共振成像(MRI)是唯一一种能够成像白质的神经结构并更好地了解大脑是如何连接的非侵入性技术。因此,扩散磁共振成像是一种在宏观尺度上测量结缔组织的工具,即在毫米尺度上测量短距离和长距离连接。绘制白质连接体图的关键部分是从dMRI纤维束成像计算的测量结果。纤维束造影术是重建白质纤维束的计算机化过程。遗憾的是,目前的纤维束成像技术不能控制算法产生的无效连接,不能重建现有纤维束的全部范围,也不是一种定量技术。到今天为止,众所周知的是,使用跟踪照相术发表的作品缺乏准确性,但大多被忽视了,因为没有公共数据库来验证技术。越来越多的证据表明,跟踪成像的错误会导致错误的连通性解释。我的研究计划的主要目标是提出一场扩散磁共振成像的“跟踪成像革命”。射线成像必须作为一个困难的不适定反问题来解决,它需要所有可能的外部信息,以期以高质量、高精度和高重复性来解决该问题。第一个短期目标是提出一个标准化和开放的数据库,用于评价成功的制图术发展。第二个短期目标是将先进的多维(MD)数学和物理学融入到光谱分析过程中。中期目标是提出一个计算框架,将解剖学知识、显微结构信息和跟踪过程中的多模式信息结合在一起。另一个中长期目标是开发机器学习技术,通过整合过去成功和失败的信息,从错误中学习什么应该跟踪,哪里不应该跟踪。在连接学应用的时代,神经科学和医学迫切需要解决脑束成像和结构脑成像的根本局限性。拥有新的和定量的光谱分析工具的潜在价值是非常高的。这将对加拿大和全世界的神经科学产生重大影响,因为它是人脑图谱和连接组项目的核心。它将有助于更好地描述广泛、大规模的神经元网络,这些网络是几种最复杂的人类神经疾病的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Descoteaux, Maxime其他文献

Altered structural connectivity in olfactory disfunction after mild COVID-19 using probabilistic tractography.
  • DOI:
    10.1038/s41598-023-40115-7
  • 发表时间:
    2023-08-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Bispo, Diogenes Diego de Carvalho;Brandao, Pedro Renato de Paula;Pereira, Danilo Assis;Maluf, Fernando Bisinoto;Dias, Bruna Arrais;Paranhos, Hugo Rafael;von Glehn, Felipe;de Oliveira, Augusto Cesar Penalva;Soares, Alexandre Anderson de Sousa Munhoz;Descoteaux, Maxime;Regattieri, Neysa Aparecida Tinoco
  • 通讯作者:
    Regattieri, Neysa Aparecida Tinoco
TractoInferno - A large-scale, open-source, multi-site database for machine learning dMRI tractography.
  • DOI:
    10.1038/s41597-022-01833-1
  • 发表时间:
    2022-11-25
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Poulin, Philippe;Theaud, Guillaume;Rheault, Francois;St-Onge, Etienne;Bore, Arnaud;Renauld, Emmanuelle;de Beaumont, Louis;Guay, Samuel;Jodoin, Pierre-Marc;Descoteaux, Maxime
  • 通讯作者:
    Descoteaux, Maxime
Tractometer: Towards validation of tractography pipelines
  • DOI:
    10.1016/j.media.2013.03.009
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Cote, Marc-Alexandre;Girard, Gabriel;Descoteaux, Maxime
  • 通讯作者:
    Descoteaux, Maxime
The Role of the Pallidothalamic Fibre Tracts in Deep Brain Stimulation for Dystonia: A Diffusion MRI Tractography Study
  • DOI:
    10.1002/hbm.23450
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Rozanski, Verena Eveline;da Silva, Nadia Moreira;Descoteaux, Maxime
  • 通讯作者:
    Descoteaux, Maxime
DORIS: A diffusion MRI-based 10 tissue class deep learning segmentation algorithm tailored to improve anatomically-constrained tractography.
  • DOI:
    10.3389/fnimg.2022.917806
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Theaud, Guillaume;Edde, Manon;Dumont, Matthieu;Zotti, Clement;Zucchelli, Mauro;Deslauriers-Gauthier, Samuel;Deriche, Rachid;Jodoin, Pierre-Marc;Descoteaux, Maxime
  • 通讯作者:
    Descoteaux, Maxime

Descoteaux, Maxime的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Descoteaux, Maxime', 18)}}的其他基金

Advanced developments of diffusion MRI tractography computational methods
扩散MRI纤维束成像计算方法的进展
  • 批准号:
    RGPIN-2020-04818
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced developments of diffusion MRI tractography computational methods
扩散MRI纤维束成像计算方法的进展
  • 批准号:
    RGPIN-2020-04818
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Towards optimal diffusion MRI tractography and validation
实现最佳扩散 MRI 纤维束成像和验证
  • 批准号:
    RGPIN-2015-05297
  • 财政年份:
    2019
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Towards optimal diffusion MRI tractography and validation
实现最佳扩散 MRI 纤维束成像和验证
  • 批准号:
    RGPIN-2015-05297
  • 财政年份:
    2018
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Towards optimal diffusion MRI tractography and validation
实现最佳扩散 MRI 纤维束成像和验证
  • 批准号:
    RGPIN-2015-05297
  • 财政年份:
    2017
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Towards optimal diffusion MRI tractography and validation
实现最佳扩散 MRI 纤维束成像和验证
  • 批准号:
    RGPIN-2015-05297
  • 财政年份:
    2016
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Towards optimal diffusion MRI tractography and validation
实现最佳扩散 MRI 纤维束成像和验证
  • 批准号:
    RGPIN-2015-05297
  • 财政年份:
    2015
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Computational diffusion magnetic resonance imaging: acquisition, modeling, processing and visualization to study brain connectivity and tissue microstructure
计算扩散磁共振成像:采集、建模、处理和可视化,以研究大脑连接和组织微观结构
  • 批准号:
    386741-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Computational diffusion magnetic resonance imaging: acquisition, modeling, processing and visualization to study brain connectivity and tissue microstructure
计算扩散磁共振成像:采集、建模、处理和可视化,以研究大脑连接和组织微观结构
  • 批准号:
    386741-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Computational diffusion magnetic resonance imaging: acquisition, modeling, processing and visualization to study brain connectivity and tissue microstructure
计算扩散磁共振成像:采集、建模、处理和可视化,以研究大脑连接和组织微观结构
  • 批准号:
    386741-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Mapping lifespan trajectories of white matter in autism and improving reproducibility through shared diffusion MRI data
通过共享扩散 MRI 数据绘制自闭症患者白质的寿命轨迹并提高可重复性
  • 批准号:
    10648969
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
  • 批准号:
    10793008
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
Evaluating a Comprehensive Multimodal Outpatient Rehabilitation Program to Improve the Functioning of Persons Suffering from Post-acute Sequelae of SARS-CoV-2 infection (PASC): A Randomized Controlled
评估综合多模式门诊康复计划以改善 SARS-CoV-2 感染急性后遗症患者的功能 (PASC):一项随机对照研究
  • 批准号:
    10583969
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
Developments of New Method for Artifact Removal and Image Super-Resolution Technique in Diffusion-Weighted Imaging at 7 Tesla
7特斯拉扩散加权成像伪影去除新方法和图像超分辨率技术的进展
  • 批准号:
    22K12809
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advanced developments of diffusion MRI tractography computational methods
扩散MRI纤维束成像计算方法的进展
  • 批准号:
    RGPIN-2020-04818
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced developments of diffusion MRI tractography computational methods
扩散MRI纤维束成像计算方法的进展
  • 批准号:
    RGPIN-2020-04818
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and agent-based modeling of complex microbial systems: a means for..
复杂微生物系统的统计和基于代理的建模:一种手段......
  • 批准号:
    10615095
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
Statistical and agent-based modeling of complex microbial systems: a means for..
复杂微生物系统的统计和基于代理的建模:一种手段......
  • 批准号:
    10227256
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
Statistical and agent-based modeling of complex microbial systems: a means for..
复杂微生物系统的统计和基于代理的建模:一种手段......
  • 批准号:
    10399592
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
Mechanism of PRC2-mediated Gene Silencing during Cardiomyocyte Differentiation
PRC2介导的心肌细胞分化过程中基因沉默的机制
  • 批准号:
    10166911
  • 财政年份:
    2019
  • 资助金额:
    $ 4.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了