Applications of order convergence in Banach lattices
阶收敛在 Banach 格中的应用
基本信息
- 批准号:RGPIN-2020-04855
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal is in the theory of Banach and vector lattices. This is an area of Functional Analysis that focuses on partial order structures in Banach spaces. The proposal consists of several parts. 1. Uo-convergence (unbounded order convergence) is a derivative of order convergence. Its importance became clear after a recent series of papers where my collaborators and I established some properties that make uo-convergence an excellent tool for connecting Banach lattices with function spaces. This has led to applications to order closed convex sets, preduals of Banach lattices, and risk measures. I am going to further explore certain properties and applications of uo-convergence. J.Grobler and C.Labuschagne have recently developed several new techniques based on universal completions of vector lattices and used them to extend certain results of stochastic analysis to a vector lattice setting. I am going to explore the relationship between these techniques, uo--convergence, uo-dualss, and uo-completeness, and apply this to measure-free stochastic theory. I would also like to connect these techniques with D.Fremlin's representation of universally complete spaces as spaces of measurable functions on Boolean algebras. 3. Bibasic sequences. Basic sequences play a major role in the theory of Banach spaces. In an ongoing joint project with M.Taylor, we have been studying bibasic sequences, which are basic sequences in Banach lattices whose basis expansions converge not only in norm but also in order. We have established many exciting properties of such sequences. We proved that most classical basic sequences in Analysis are bibasic. I propose to further study bibasic sequences, as well as uo-bibasic sequences. In particular, I want to determine whether every closed sublattice of a Banach lattice contains a bibasic or a uo-bibasic sequence, and whether every order basic sequence in a sequentially order complete Banach lattice is (Schauder) basic. 4. Free Banach lattices. Free Banach lattices FBL(A) and FBL[E] have recently been constructed by B.de Pagter, A.Wickstead, A.Aviles, et al. They also found an explicit formula for the norm of FBL[E]. I found an alternative way of constructing FBL(A) and FBL[E] in [T3]. In an ongoing project with M.Taylor, P.Tradacete et al, we have used the approach of [T3] to construct free p-convex Banach lattices; we have also found a formula for its norm. I propose to work on several open questions related to FBL[E]; among others, whether the sequence (|xk|) is basic in FBL[E] whenever (xk) is basic in E. I propose to use the theory of p-multinorms to find an explicit formula for the norm of the free Banach lattice with the upper p-estimate. I am also interested in constructing free Banach lattice algebras. 5. I am going to complete writing a book about vector and Banach lattices.
该建议是在理论的巴拿赫和向量格。这是函数分析的一个领域,重点关注Banach空间中的偏序结构。该提案由几个部分组成。1. Uo-收敛(无界阶收敛)是阶收敛的导数。它的重要性在最近的一系列论文中变得清晰起来,在这些论文中,我和我的合作者建立了一些性质,这些性质使得uo收敛成为连接Banach格与函数空间的优秀工具。这导致了应用程序,以封闭的凸集,prefetching的巴拿赫格,和风险措施。我将进一步探讨uo收敛的某些性质和应用。J.Grobler和C.Labuschagne最近发展了几种基于向量格的泛完备化的新技术,并利用它们将随机分析的某些结果推广到向量格环境。我将探讨这些技术之间的关系,uo-收敛,uo-对偶,uo-完备性,并将其应用于无测度随机理论。我也想把这些技巧与D.Fremlin的表示普遍完整的空间作为空间的可测功能的布尔代数。3.双碱基序列。基本序列在Banach空间理论中起着重要作用。在与M.Taylor的一个正在进行的联合项目中,我们一直在研究双基序列,这是Banach格中的基本序列,其基展开式不仅在范数上收敛,而且在序上收敛。我们已经确定了此类序列的许多令人兴奋的性质。我们证明了分析中的大多数经典基本序列是二元的。我建议进一步研究二元序列,以及uo-二元序列。特别地,我想确定Banach格的每一个闭子格是否包含一个二元序列或一个uo-二元序列,以及序完备Banach格的每一个序基序列是否是(Schauder)基序列. 4.自由Banach格Pagter,A.Wickstead,A.阿维莱斯等人最近构造了自由Banach格FBL(A)和FBL[E],B.de我在[T3]中找到了另一种构造FBL(A)和FBL[E]的方法。在与M.Taylor,P.Tradacete等人正在进行的一个项目中,我们使用[T3]的方法构造了自由p-凸Banach格,并找到了它的范数公式。我建议研究几个与FBL相关的开放性问题[E];其中,序列是否(|XK|)在FBL[E]中是基本的,只要(xk)在E中是基本的。我建议使用的p-多项式的理论找到一个明确的公式的范数的自由Banach格与上p-估计。我也有兴趣在建设自由巴拿赫格代数。5.我将完成写一本关于向量和巴拿赫格的书。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Troitsky, Vladimir其他文献
Troitsky, Vladimir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Troitsky, Vladimir', 18)}}的其他基金
Applications of order convergence in Banach lattices
阶收敛在 Banach 格中的应用
- 批准号:
RGPIN-2020-04855 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Applications of order convergence in Banach lattices
阶收敛在 Banach 格中的应用
- 批准号:
RGPIN-2020-04855 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Applications of Banach lattices to operator theory and stochastic processes
Banach 格在算子理论和随机过程中的应用
- 批准号:
RGPIN-2015-04051 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Applications of Banach lattices to operator theory and stochastic processes
Banach 格在算子理论和随机过程中的应用
- 批准号:
RGPIN-2015-04051 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Applications of Banach lattices to operator theory and stochastic processes
Banach 格在算子理论和随机过程中的应用
- 批准号:
RGPIN-2015-04051 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Applications of Banach lattices to operator theory and stochastic processes
Banach 格在算子理论和随机过程中的应用
- 批准号:
RGPIN-2015-04051 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Applications of Banach lattices to operator theory and stochastic processes
Banach 格在算子理论和随机过程中的应用
- 批准号:
RGPIN-2015-04051 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Properties of certain classes of operators on Banach spaces
Banach 空间上某些类算子的性质
- 批准号:
311899-2010 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Properties of certain classes of operators on Banach spaces
Banach 空间上某些类算子的性质
- 批准号:
311899-2010 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Properties of certain classes of operators on Banach spaces
Banach 空间上某些类算子的性质
- 批准号:
311899-2010 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
体内亚核小体图谱的绘制及其调控机制研究
- 批准号:32000423
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
- 批准号:32000425
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
- 批准号:31970585
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
- 批准号:31960136
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
染色质三维结构等位效应的亲代传递研究
- 批准号:31970586
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
染色质三维构象新型调控因子的机制研究
- 批准号:31900431
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
- 批准号:31970589
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Kummer扩张的代数几何码的若干问题研究
- 批准号:11701317
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
RII Track-4:NSF: Continental-scale, high-order, high-spatial-resolution, ice flow modeling based on graphics processing units (GPUs)
RII Track-4:NSF:基于图形处理单元 (GPU) 的大陆尺度、高阶、高空间分辨率冰流建模
- 批准号:
2327095 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348955 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Congestion control in complex networks with higher-order interactions
具有高阶交互的复杂网络中的拥塞控制
- 批准号:
DP240100963 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Projects
MCA: Problem-Based Learning for Warehousing and Order Fulfillment
MCA:基于问题的仓储和订单履行学习
- 批准号:
2322250 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant