Molecular and computational tools for regulatory genomics
调控基因组学的分子和计算工具
基本信息
- 批准号:RGPIN-2020-05425
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Transcription of genomic DNA is a central step in regulating how much each gene is expressed, and integral to development, cellular identity, and response to stimuli. Cells use proteins called transcription factors that work together in complex ways to interpret DNA sequences and regulate transcription in a process termed "cis-regulatory logic". Although we can study cis-regulation using the reference human genome, it likely doesn't contain sufficient examples of the rarely-used regulatory from which to learn. However, we can learn arbitrarily complex mechanisms by creating new examples. The long-term objective of my research program is to predict gene expression in any cell type from DNA sequence alone. In the short term, I will learn cis-regulatory logic in select cell types with the next generation of experimental and computational tools. We previously showed that random DNA makes ideal training data for learning cis-regulatory logic. Random DNA can be synthesized and assayed in very high throughput. Each experiment measured an entire human genome's worth of regulatory DNA. Random DNA was comparable in activity to actual regulatory DNA due to the abundant cis-regulatory elements included by chance. The scale and diversity of these data allowed us to learn complex regulatory mechanisms from scratch, significantly advancing our understanding of cis-regulation. We hypothesize that random DNA will yield similar insights into human cis-regulation. The assortment of -regulatory elements in each random sequence will provide rich data from which to learn the roles of the transcription factors active in each cell type. (1) We will learn complex cis-regulatory mechanisms in a controlled system. We will develop experimental tools for measuring the regulatory activity of tens of millions of DNA sequences per experiment in a controlled system and in many cell types, giving us the scale of training data needed to learn complex regulatory mechanisms. (2) We will adapt our models to the genome. By randomizing genomic DNA and measuring gene expression, we will learn how cis-regulatory sequences affect the expression of endogenous genes. This will allow us to predict gene expression from sequence genome-wide. (3) Learning more complex rules. As we generate data through the first two objectives, we will develop our models to capture more complex and rare gene regulatory rules. The approaches we create in Objectives 1 and 2 will act as gene regulation sentinels, providing a direct readout of the transcriptional cell state. We will make our computational and experimental tools accessible to others in the field, maximizing our impact. As a mixed computational and experimental lab, the 9 HQP included in this application will be trained in machine learning, "big data", statistics, genome editing, synthetic biology, molecular biology, gene regulation, project management, and communication.
基因组DNA的转录是调节每个基因表达量的核心步骤,也是发育、细胞身份和对刺激反应的组成部分。细胞使用一种叫做转录因子的蛋白质,这种蛋白质以复杂的方式共同作用,解释DNA序列,并在一个被称为“顺式调控逻辑”的过程中调节转录。虽然我们可以使用参考人类基因组来研究顺式调控,但它可能没有足够的例子来学习很少使用的调控。然而,我们可以通过创建新示例来学习任意复杂的机制。我的研究计划的长期目标是仅从DNA序列预测任何细胞类型中的基因表达。在短期内,我将利用新一代的实验和计算工具学习选择细胞类型的顺式调控逻辑。我们之前的研究表明,随机DNA是学习顺式调控逻辑的理想训练数据。随机DNA可以合成和分析在非常高的通量。每个实验都测量了整个人类基因组的调控DNA。随机DNA的活性与实际的调控DNA相当,因为随机包含了大量的顺式调控元件。这些数据的规模和多样性使我们能够从头开始学习复杂的监管机制,大大提高了我们对顺式监管的理解。我们假设,随机DNA将对人类顺式调控产生类似的见解。每个随机序列中-调控元件的分类将为了解每种细胞类型中活跃的转录因子的作用提供丰富的数据。(1)我们将学习受控系统中复杂的顺式调控机制。我们将开发实验工具,用于在受控系统和许多细胞类型中测量每个实验中数千万个DNA序列的调控活性,为我们提供学习复杂调控机制所需的训练数据规模。(2)我们将使我们的模型适应基因组。通过随机化基因组DNA和测量基因表达,我们将了解顺式调控序列如何影响内源基因的表达。这将使我们能够从全基因组序列中预测基因表达。(3)学习更复杂的规则。当我们通过前两个目标生成数据时,我们将开发我们的模型来捕获更复杂和罕见的基因调控规则。我们在目标1和目标2中创建的方法将作为基因调控哨兵,提供转录细胞状态的直接读数。我们将使该领域的其他人可以使用我们的计算和实验工具,最大限度地发挥我们的影响。作为一个混合计算和实验的实验室,这个应用程序中包含的9个HQP将在机器学习、“大数据”、统计学、基因组编辑、合成生物学、分子生物学、基因调控、项目管理和通信方面进行培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
deBoer, Carl其他文献
deBoer, Carl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('deBoer, Carl', 18)}}的其他基金
Molecular and computational tools for regulatory genomics
调控基因组学的分子和计算工具
- 批准号:
RGPIN-2020-05425 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Ultracentrifugation system for purification of synthetic biology constructs
用于纯化合成生物学构建体的超速离心系统
- 批准号:
RTI-2021-00109 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Research Tools and Instruments
Molecular and computational tools for regulatory genomics
调控基因组学的分子和计算工具
- 批准号:
RGPIN-2020-05425 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Molecular and computational tools for regulatory genomics
调控基因组学的分子和计算工具
- 批准号:
DGECR-2020-00036 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Launch Supplement
Mechanisms of Transcript Definition in Yeast
酵母中转录本定义的机制
- 批准号:
425660-2012 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
Mechanisms of Transcript Definition in Yeast
酵母中转录本定义的机制
- 批准号:
425660-2012 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似国自然基金
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
- 批准号:
10678199 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Molecular and Computational Tools for Identifying Somatic Mosaicism in Human Tissues
识别人体组织中体细胞镶嵌的分子和计算工具
- 批准号:
10661147 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Ribo-STAMPEDE: novel tools for molecular profiling of brain cell types
Ribo-STAMPEDE:脑细胞类型分子分析的新工具
- 批准号:
10506300 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Molecular and computational tools for regulatory genomics
调控基因组学的分子和计算工具
- 批准号:
RGPIN-2020-05425 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Integrative analysis of high dimensional tissue molecular data to define key biological systems in autoimmune diseases (SBC)
高维组织分子数据综合分析,定义自身免疫性疾病 (SBC) 的关键生物系统
- 批准号:
10450354 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Integrative analysis of high dimensional tissue molecular data to define key biological systems in autoimmune diseases (SBC)
高维组织分子数据综合分析,定义自身免疫性疾病 (SBC) 的关键生物系统
- 批准号:
10687728 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Integrative analysis of high dimensional tissue molecular data to define key biological systems in autoimmune diseases (SBC)
高维组织分子数据综合分析,定义自身免疫性疾病 (SBC) 的关键生物系统
- 批准号:
10594505 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Dissecting and reconstructing the molecular roadmaps of cellular reprogramming to iPSCs in single-cell resolution
以单细胞分辨率剖析和重建 iPSC 细胞重编程的分子路线图
- 批准号:
10320077 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Dissecting and reconstructing the molecular roadmaps of cellular reprogramming to iPSCs in single-cell resolution
以单细胞分辨率剖析和重建 iPSC 细胞重编程的分子路线图
- 批准号:
10535468 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10197672 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别: