Theoretical Chemical Design with Machine Learning: Model Development and Applications
机器学习理论化学设计:模型开发和应用
基本信息
- 批准号:RGPIN-2020-06685
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chemists identify the right substance for a given task (e.g., a drug molecule that binds to a target protein) by studying the structure and properties of molecules and materials, as well as the changes they undergo. This is challenging because chemical compound space is vast (i.e., there are innumerable potential chemical substances) and experimental measurement of chemical properties is time-consuming, resource intensive, and sometimes even unethical. Traditional theoretical chemistry develops physical models and uses computational resources to calculate chemical properties. Conventional methods based on accurate quantum mechanics calculations are often inapplicable because they are too expensive (i.e. their computational cost grows exponentially with the size of the molecule), while conventional methods based on fast molecular mechanics simulations are often too inaccurate to reliably predict new phenomena. These technical and practical limitations motivate my interest in computer-aided molecular design and, specifically, in developing 1) new mathematical models based on state-of-the-art machine learning (ML) algorithms and 2) new tools to qualitatively and quantitatively predict chemical phenomena and ultimately design molecules with desirable properties. Just as human chemists learn from past experiences to make predictions about the properties of new molecules, in ML a mathematical model is trained to leverage the results of previous experimental measurements or computational studies to predict the properties of new molecules. The proposed models are applicable to many problems in chemistry and aim to achieve the accuracy of reliable quantum chemistry methods at the cost of molecular mechanics. Thus, they can be used for the systematic, rapid, and robust screening of large molecular databases, thereby guiding subsequent experimental and theoretical studies. It is important to note that ML methods are applicable even where experimental measurements (e.g., chemistry in extreme environments, astrochemistry) and computational simulations (e.g., physiological responses like toxicity and carcinogenicity) are impossible. We disseminate our models through software packages including ChemTools, a free and open-source platform for discovering and exploring chemical concepts, which so far has attracted users from ~10 international research groups. There is also an educational impact to my research. For example, we have organized 3 ChemTools workshops so far (Chile 2017, China 2018 & France 2019) educating students and postdocs on Python and conceptual quantum chemistry. ChemTools is used in teaching (under)graduate courses to facilitate grasping theoretical concepts and to familiarize students with programming, which is among the most marketable technical skills. More importantly, through my research, I will train a diverse group of 5 Ph.D., 4 M.Sc. and 5 undergraduate researchers, thereby empowering the next generation of leaders.
化学家为给定的任务确定正确的物质(例如,一种与靶蛋白结合的药物分子),通过研究分子和材料的结构和性质,以及它们所经历的变化。这是具有挑战性的,因为化合物空间是巨大的(即,存在无数潜在的化学物质),化学性质的实验测量耗时、资源密集,有时甚至是不道德的。传统的理论化学开发物理模型,并使用计算资源来计算化学性质。基于精确量子力学计算的传统方法通常不适用,因为它们太昂贵(即它们的计算成本随着分子的大小呈指数增长),而基于快速分子力学模拟的传统方法通常太不准确,无法可靠地预测新现象。这些技术和实践上的限制激发了我对计算机辅助分子设计的兴趣,特别是在开发1)基于最先进的机器学习(ML)算法的新数学模型和2)定性和定量预测化学现象并最终设计具有理想特性的分子的新工具。就像人类化学家从过去的经验中学习来预测新分子的性质一样,在ML中,数学模型被训练来利用以前的实验测量或计算研究的结果来预测新分子的性质。所提出的模型适用于化学中的许多问题,旨在以分子力学为代价实现可靠的量子化学方法的准确性。因此,它们可用于系统、快速和稳健地筛选大型分子数据库,从而指导后续的实验和理论研究。重要的是要注意,ML方法即使在实验测量(例如,极端环境中的化学,天体化学)和计算模拟(例如,生理反应,如毒性和致癌性)是不可能的。我们通过包括ChemTools在内的软件包传播我们的模型,ChemTools是一个用于发现和探索化学概念的免费开源平台,迄今为止已经吸引了来自10个国际研究小组的用户。对我的研究也有教育上的影响。例如,到目前为止,我们已经组织了3个ChemTools研讨会(智利2017年,中国2018年和法国2019年),为学生和博士后提供Python和概念量子化学方面的教育。ChemTools用于教学(下)研究生课程,以促进掌握理论概念,并使学生熟悉编程,这是最有市场的技术技能之一。更重要的是,通过我的研究,我将培养一个多元化的团队,4名硕士和5名本科研究人员,从而赋予下一代领导者权力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HeidarZadeh, Farnaz其他文献
HeidarZadeh, Farnaz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HeidarZadeh, Farnaz', 18)}}的其他基金
Theoretical Chemical Design with Machine Learning: Model Development and Applications
机器学习理论化学设计:模型开发和应用
- 批准号:
RGPIN-2020-06685 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Theoretical Chemical Design with Machine Learning: Model Development and Applications
机器学习理论化学设计:模型开发和应用
- 批准号:
DGECR-2020-00191 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Launch Supplement
Theoretical Chemical Design with Machine Learning: Model Development and Applications
机器学习理论化学设计:模型开发和应用
- 批准号:
RGPIN-2020-06685 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
A New Machine Learning Method for Chemical Property Prediction Using the Spectral Signatures of Properties on Molecular Surfaces
一种利用分子表面性质的光谱特征预测化学性质的新机器学习方法
- 批准号:
452387-2013 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
A new machine learning method for drug design
药物设计的新机器学习方法
- 批准号:
451638-2013 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
A New Machine Learning Method for Chemical Property Prediction Using the Spectral Signatures of Properties on Molecular Surfaces
一种利用分子表面性质的光谱特征预测化学性质的新机器学习方法
- 批准号:
452387-2013 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
相似国自然基金
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
RII Track-4:NSF: Automated Design and Innovation of Chemical Production Processes with Intelligent Computing
RII Track-4:NSF:利用智能计算进行化学品生产过程的自动化设计和创新
- 批准号:
2327303 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Chemical and structural design for high power energy storage materials
高功率储能材料的化学与结构设计
- 批准号:
DE240100032 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Early Career Researcher Award
Smart Design of New Composite Materials with Chemical Simulation
化学模拟智能设计新型复合材料
- 批准号:
10074466 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant for R&D
Postdoctoral Fellowship: MPS-Ascend: Selective Electrogeneration of Ammonia from Nitrate - establishing Control of Bimetallic Electrocatalysts Through Interfacial Chemical Design
博士后奖学金:MPS-Ascend:从硝酸盐选择性电生成氨 - 通过界面化学设计建立双金属电催化剂的控制
- 批准号:
2316072 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Fellowship Award
Design and development of a portable cloud chamber and understanding of mixed-phase microphysical and chemical processes by mountain observation
便携式云室的设计和开发以及通过山地观测了解混合相微物理和化学过程
- 批准号:
23K17465 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Structure-based Design of Selective Serotonin Biased Agonists as Chemical Probes for Psychedelic Potential
基于结构的选择性血清素偏向激动剂设计作为迷幻潜力的化学探针
- 批准号:
10712002 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Towards design of chemical-resilient agricultural landscapes
迈向耐化学品农业景观设计
- 批准号:
2887772 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Studentship
Chemical design and DFT approach of heterojunction photocatalysts for CO2 reduction
用于 CO2 还原的异质结光催化剂的化学设计和 DFT 方法
- 批准号:
22KF0285 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows