The Solution of Partial Differential Equations on Realistic Geometries

现实几何上偏微分方程的解

基本信息

  • 批准号:
    RGPIN-2020-06022
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Many useful physical quantities (capacitance, stresses, electromagnetic scattering, etc.) are computed by solving elliptic partial differential equations (PDEs) on realistic geometries with boundaries containing corners, edges, and conical points. Even for simple boundaries (i.e. a cube), the solutions to the PDEs on the corresponding regions usually have singularities near such features. This non-smooth behavior is a major sticking point in both the numerical solution of elliptic PDEs, and their mathematical theory. Numerically, non-smooth behavior can present the following problem. While smooth functions are usually representable to high precision by short finite Fourier series (or short series of Chebyshev or Legendre polynomials), singular functions can take on a bewildering variety of behaviors. For example, an analytic function can have poles, branches, or essential singularities (in the neighborhood of which it takes on every complex value except possibly one!). Often such functions can be represented by nested Chebyshev or Gauss-Legendre discretizations, but a large number of degrees of freedom is usually required to capture all of the possible unknown behavior to high precision. It turns out, however, that many of the singular functions encountered on geometries with corners and edges can be characterized in great detail. For instance, in the case of Laplace's equation on a two-dimensional domain with corners, the singular solutions near corners are representable by elementary asymptotic series of known singular powers. With such a representation in hand, the behavior of the solutions to the PDEs becomes significantly more circumscribed, and so efficient special-purpose discretizations can be constructed for the singular solutions. As a result, many historically numerically refractory PDEs involving domains with corners can be solved rapidly and to essentially machine precision. When solving elliptic PDEs numerically to high precision, it is often necessary to reformulate the problems as second kind integral equations using classical potential theory. In two dimensions, the solutions to the associated integral equations near corners have been characterized for several elliptic PDEs, however the much more detailed (and useful) case of three dimensions remains largely unexplored. We propose to construct an analytical apparatus characterizing precisely the behavior of the solutions to the integral equations associated with various elliptic PDEs (Laplace, Helmholtz, Stokes, and eventually Maxwell) in the vicinity of edges, corners, and conical points in three dimensions. We will construct a numerical apparatus exploiting this analytical information, obviating the need for nested discretizations. The creation of such boundary integral based schemes in three dimensions, if eliminating the longstanding (and numerically intractable) issues surrounding edges, would constitute a major advance in engineering and applied sciences.
许多有用的物理量(电容、应力、电磁散射等)是通过求解椭圆偏微分方程(PDE)的实际几何形状与边界包含角,边缘,和圆锥点。即使对于简单的边界(即立方体),相应区域上的偏微分方程的解通常在这些特征附近具有奇点。这种非光滑行为是椭圆偏微分方程数值解及其数学理论中的一个主要症结。从数值上讲,非平滑行为可能会出现以下问题。虽然光滑函数通常可以用短的有限傅里叶级数(或切比雪夫或勒让德多项式的短级数)表示为高精度,但奇异函数可以呈现出令人困惑的各种行为。例如,一个解析函数可以有极点、分支或本质奇点(在其邻域内,它可以取除了一个之外的所有复值!)。通常,此类函数可以用嵌套的切比雪夫或高斯-勒让德离散化来表示,但通常需要大量的自由度才能高精度地捕获所有可能的未知行为。然而,事实证明,在有角和边的几何上遇到的许多奇异函数都可以非常详细地描述。例如,在二维角点区域上的拉普拉斯方程,角点附近的奇异解可用已知奇异幂的初等渐近级数表示。有了这样的表示,偏微分方程的解的行为变得更加严格,因此可以为奇异解构造有效的专用离散化。其结果是,许多历史上数值难处理的偏微分方程,涉及域的角落,可以快速解决,基本上机器精度。在高精度数值求解椭圆型偏微分方程时,常常需要利用经典位势理论将问题转化为第二类积分方程。在二维空间中,角点附近相关积分方程的解已经被描述为几个椭圆偏微分方程的特征,但是三维空间中更详细(和有用)的情况仍然在很大程度上未被探索。我们建议构造一个分析仪器,精确地表征与各种椭圆偏微分方程(拉普拉斯,亥姆霍兹,斯托克斯,并最终麦克斯韦)在三维的边缘,角落和圆锥点附近的积分方程的解的行为。我们将构建一个数值装置,利用这些分析信息,避免嵌套离散化的需要。在三维中创建这种基于边界积分的方案,如果消除围绕边缘的长期存在的(和数值上难以处理的)问题,将构成工程和应用科学的重大进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Serkh, Kirill其他文献

Optimal Schedules of Light Exposure for Rapidly Correcting Circadian Misalignment
  • DOI:
    10.1371/journal.pcbi.1003523
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Serkh, Kirill;Forger, Daniel B.
  • 通讯作者:
    Forger, Daniel B.

Serkh, Kirill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Serkh, Kirill', 18)}}的其他基金

The Solution of Partial Differential Equations on Realistic Geometries
现实几何上偏微分方程的解
  • 批准号:
    RGPIN-2020-06022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
The Solution of Partial Differential Equations on Realistic Geometries
现实几何上偏微分方程的解
  • 批准号:
    RGPIN-2020-06022
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
The Solution of Partial Differential Equations on Realistic Geometries
现实几何上偏微分方程的解
  • 批准号:
    DGECR-2020-00356
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
  • 批准号:
    41664001
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
  • 批准号:
    61402377
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
  • 批准号:
    11261019
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The Solution of Partial Differential Equations on Realistic Geometries
现实几何上偏微分方程的解
  • 批准号:
    RGPIN-2020-06022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
  • 批准号:
    569181-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
An efficient, accurate and robust solution technique for variable coefficient elliptic partial differential equations in complex geometries
复杂几何中变系数椭圆偏微分方程的高效、准确和稳健的求解技术
  • 批准号:
    2110886
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Global analysis for solution of dispersive partial differential equation with mass subcritical nonlinearity
具有质量次临界非线性的色散偏微分方程解的全局分析
  • 批准号:
    21H00993
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CDS&E: A framework for solution of coupled partial differential equations on heterogeneous parallel systems
合作研究:CDS
  • 批准号:
    2003747
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
The Solution of Partial Differential Equations on Realistic Geometries
现实几何上偏微分方程的解
  • 批准号:
    RGPIN-2020-06022
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CDS&E: A framework for solution of coupled partial differential equations on heterogeneous parallel systems
合作研究:CDS
  • 批准号:
    2004236
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
The Solution of Partial Differential Equations on Realistic Geometries
现实几何上偏微分方程的解
  • 批准号:
    DGECR-2020-00356
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了