Bacterial biofilms as sustainable catalytic materials studied in customized microfluidic bioanalytical flow-cells
在定制微流体生物分析流通池中研究细菌生物膜作为可持续催化材料
基本信息
- 批准号:RGPIN-2020-06708
- 负责人:
- 金额:$ 5.76万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 12 principles of green chemistry offer a roadmap to move chemical industry to a sustainable paradigm. Catalysis is one of the major pillars of the green chemistry initiative, whereby reusable materials speed up reaction times, while reducing waste and reaction energy requirements. However, production of inorganic catalysts faces challenges due to volatility in raw material prices. As well, the unsustainable methods for raw material extraction can reduce their overall sustainability. Another approach can be found in living bacteria, the same biological catalysts that have driven Earth's geochemistry for billions of years and which have been used by humanity for centuries for production of food and beverages. Recently, so-called "whole-cell catalysis" has become an active area of research due its suitability for sustainable chemistry. Bacteria hold the potential for low-cost synthesis of fine chemicals, including chiral molecules and pharmaceuticals, natural food additives, and have applications in bioremediation and energy. In particular bacterial biofilms are promising because they can self-produce; their protective extracellular polymeric matrix can mitigate challenges related to harsh chemical environments; they have a preference for surface attachment, eliminating reaction steps associated with product/catalyst separation; and they are suitable for efficient flow reactor setups. After six years developing state-of-the-art microfluidic tools and methods to control bacterial biofilms, this proposal lays out a bold research and training plan to develop biofilms into propose-driven biocatalytic materials. We will direct our efforts to create the analytical tools required to better study biocatalytic reactions and utilize them in the development of applications in bioenergy. Our plan is outlined in three themes, (1) studies of bacterial catalysis reaction kinetics (2) applications to better performing microbial fuel cells, and (3) new characterization tools for next-stage biocatalysis development. This is a highly multidisciplinary research program, involving concepts in chemistry, microbiology, physics and engineering. Microfluidics is a constant theme in this program due to its unique ability to control and harness the potential of living biofilms as sustainable biomaterials. The training environment will bring together highly qualified personnel from a broad background where they will work together in a state-of-the-art CFI-funded laboratories amongst a growing network of bioanalytical researchers at Laval University. The successful implementation of this research program will boost Canadian expertise and the economy in key areas related to catalysis, microfluidics, and life-science analytics worth over $100B worldwide. Moreover, it addresses growing social awareness-and demand-around the need to implement new sustainable technology to rapidly reduce the environmental impact of pollution and waste.
绿色化学的12项原则为化学工业向可持续发展模式的转变提供了路线图。催化是绿色化学倡议的主要支柱之一,可重复使用的材料可加快反应时间,同时减少废物和反应能量需求。然而,由于原材料价格的波动,无机催化剂的生产面临挑战。同样,不可持续的原材料开采方法也会降低其总体可持续性。另一种方法可以在活细菌中找到,这些生物催化剂已经驱动了地球数十亿年的地球化学,并且已经被人类用于生产食品和饮料数百年。最近,所谓的“全细胞催化”由于其对可持续化学的适用性而成为一个活跃的研究领域。细菌具有低成本合成精细化学品的潜力,包括手性分子和药物,天然食品添加剂,并在生物修复和能源方面有应用。特别是细菌生物膜是有前途的,因为它们可以自我生产;它们的保护性细胞外聚合物基质可以减轻与恶劣化学环境相关的挑战;它们具有表面附着的偏好,消除了与产物/催化剂分离相关的反应步骤;并且它们适用于有效的流动反应器设置。 经过六年的开发,最先进的微流体工具和方法来控制细菌生物膜,该提案提出了一个大胆的研究和培训计划,将生物膜开发成提议驱动的生物催化材料。我们将努力创造更好地研究生物催化反应所需的分析工具,并将其用于生物能源应用的开发。我们的计划概述了三个主题,(1)细菌催化反应动力学的研究(2)应用于更好地执行微生物燃料电池,和(3)新的表征工具,为下一阶段的生物催化发展。这是一个高度多学科的研究计划,涉及化学,微生物学,物理学和工程学的概念。微流体是该计划的一个恒定主题,因为它具有控制和利用活生物膜作为可持续生物材料的潜力的独特能力。培训环境将汇集来自广泛背景的高素质人员,他们将在拉瓦尔大学不断增长的生物分析研究人员网络中的最先进的CFI资助实验室中共同工作。 该研究计划的成功实施将促进加拿大在催化,微流体和生命科学分析等关键领域的专业知识和经济,全球价值超过1000亿美元。此外,它解决了日益增长的社会意识和需求,需要实施新的可持续技术,以迅速减少污染和废物对环境的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Greener, Jesse其他文献
A microfluidic approach to micromembrane synthesis for complex release profiles of nanocarriers
- DOI:
10.1039/d0lc00039f - 发表时间:
2020-03-21 - 期刊:
- 影响因子:6.1
- 作者:
Jia, Nan;Rosella, Erica;Greener, Jesse - 通讯作者:
Greener, Jesse
Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles
- DOI:
10.1039/b906626h - 发表时间:
2009-01-01 - 期刊:
- 影响因子:6.1
- 作者:
Li, Wei;Greener, Jesse;Kumacheva, Eugenia - 通讯作者:
Kumacheva, Eugenia
Standing Arrays of Gold Nanorods End-Tethered with Polymer Ligands
- DOI:
10.1002/smll.201101297 - 发表时间:
2012-03-12 - 期刊:
- 影响因子:13.3
- 作者:
Petukhova, Alla;Greener, Jesse;Kumacheva, Eugenia - 通讯作者:
Kumacheva, Eugenia
Portable impedance-sensing device for microorganism characterization in the field.
- DOI:
10.1038/s41598-023-37506-1 - 发表时间:
2023-06-29 - 期刊:
- 影响因子:4.6
- 作者:
Bouzid, Karim;Greener, Jesse;Carrara, Sandro;Gosselin, Benoit - 通讯作者:
Gosselin, Benoit
Versatile Microfluidic Platform for Automated Live-Cell Hyperspectral Imaging Applied to Cold Climate Cyanobacterial Biofilms
- DOI:
10.1021/acs.analchem.0c05446 - 发表时间:
2021-06-16 - 期刊:
- 影响因子:7.4
- 作者:
Deng, Tianyang;DePaoli, Damon;Greener, Jesse - 通讯作者:
Greener, Jesse
Greener, Jesse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Greener, Jesse', 18)}}的其他基金
Bacterial biofilms as sustainable catalytic materials studied in customized microfluidic bioanalytical flow-cells
在定制微流体生物分析流通池中研究细菌生物膜作为可持续催化材料
- 批准号:
RGPIN-2020-06708 - 财政年份:2022
- 资助金额:
$ 5.76万 - 项目类别:
Discovery Grants Program - Individual
Bacterial biofilms as sustainable catalytic materials studied in customized microfluidic bioanalytical flow-cells
在定制微流体生物分析流通池中研究细菌生物膜作为可持续催化材料
- 批准号:
RGPAS-2020-00053 - 财政年份:2022
- 资助金额:
$ 5.76万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Bacterial biofilms as sustainable catalytic materials studied in customized microfluidic bioanalytical flow-cells
在定制微流体生物分析流通池中研究细菌生物膜作为可持续催化材料
- 批准号:
RGPAS-2020-00053 - 财政年份:2021
- 资助金额:
$ 5.76万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Bacterial biofilms as sustainable catalytic materials studied in customized microfluidic bioanalytical flow-cells
在定制微流体生物分析流通池中研究细菌生物膜作为可持续催化材料
- 批准号:
RGPIN-2020-06708 - 财政年份:2020
- 资助金额:
$ 5.76万 - 项目类别:
Discovery Grants Program - Individual
Live viral spectroscopy for rapid Covid-19 detection applied directly to clinical biofluids without sample processing
用于快速 Covid-19 检测的活病毒光谱直接应用于临床生物体液,无需样品处理
- 批准号:
555265-2020 - 财政年份:2020
- 资助金额:
$ 5.76万 - 项目类别:
Alliance Grants
Bacterial biofilms as sustainable catalytic materials studied in customized microfluidic bioanalytical flow-cells
在定制微流体生物分析流通池中研究细菌生物膜作为可持续催化材料
- 批准号:
RGPAS-2020-00053 - 财政年份:2020
- 资助金额:
$ 5.76万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Synthesis, study and optimization of programmable biofilms for catalysis and waste water remediation
用于催化和废水修复的可编程生物膜的合成、研究和优化
- 批准号:
RGPIN-2014-03690 - 财政年份:2019
- 资助金额:
$ 5.76万 - 项目类别:
Discovery Grants Program - Individual
Analysing the properties of a thermoformed polyimide film for a gas chromatography valve
分析气相色谱阀用热成型聚酰亚胺薄膜的性能
- 批准号:
543222-2019 - 财政年份:2019
- 资助金额:
$ 5.76万 - 项目类别:
Engage Grants Program
Synthesis, study and optimization of programmable biofilms for catalysis and waste water remediation
用于催化和废水修复的可编程生物膜的合成、研究和优化
- 批准号:
RGPIN-2014-03690 - 财政年份:2018
- 资助金额:
$ 5.76万 - 项目类别:
Discovery Grants Program - Individual
Synthesis, study and optimization of programmable biofilms for catalysis and waste water remediation
用于催化和废水修复的可编程生物膜的合成、研究和优化
- 批准号:
RGPIN-2014-03690 - 财政年份:2017
- 资助金额:
$ 5.76万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Dissecting the mechanism and regulation of bacterial secreted peptidases and their role in biofilms
剖析细菌分泌肽酶的机制和调节及其在生物膜中的作用
- 批准号:
BB/Y005333/1 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Research Grant
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Studentship
CAREER: Metabolite-Depleting Materials as an Anti-Biofilms Strategy
职业:代谢物消耗材料作为抗生物膜策略
- 批准号:
2341706 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Continuing Grant
REU Site: Exploring the Limits of Life - Understanding Biofilms in Extreme Environments
REU 网站:探索生命的极限 - 了解极端环境中的生物膜
- 批准号:
2349256 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
A novel formulation for combating biofilms and improving orthopaedic surgical wound healing
一种对抗生物膜和改善骨科手术伤口愈合的新型配方
- 批准号:
2905595 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Studentship
Molecular mechanisms of Pel biosynthesis
Pel生物合成的分子机制
- 批准号:
489549 - 财政年份:2023
- 资助金额:
$ 5.76万 - 项目类别:
Operating Grants
Novel multi-excitation Raman (ME-Raman) technologies for clinical identification of respiratory biofilms in ventilator associated pneumonia (VAP)
用于临床识别呼吸机相关性肺炎 (VAP) 呼吸生物膜的新型多激发拉曼 (ME-Raman) 技术
- 批准号:
2893967 - 财政年份:2023
- 资助金额:
$ 5.76万 - 项目类别:
Studentship
ERI: Magnetic nanoparticles to fight biofilms
ERI:磁性纳米颗粒对抗生物膜
- 批准号:
2301790 - 财政年份:2023
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 5.76万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 5.76万 - 项目类别: