Enabling Intelligence on Multi-Access Edge Networks with Heterogeneous Resources

实现异构资源多接入边缘网络的智能化

基本信息

  • 批准号:
    RGPIN-2020-06919
  • 负责人:
  • 金额:
    $ 2.32万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The increasing urbanization and growing adoption of the Internet of Things (IoT) mark the dawn of the smart cities era, an era that will heavily rely on the collection and analysis of large amounts of data to improve urban life. Yet, transferring these volumes of distributed data to cloud servers across entire cities via multiple routers and links is still a big challenge from the delay, cost, and security/privacy viewpoints. The analysis of as much of this data as possible must thus be performed close to or even on its generating edge devices (e.g., sensors, smartphones, monitoring cameras, drones, connected vehicles). Being limited in resources, these heterogeneous and wirelessly-connected devices must work together as a multi-access edge network to perform such analytics in a distributed manner. This innovative direction of enabling intelligence over multi-access edge networks calls for revolutionary paradigms that can jointly and dynamically allocate resources and tasks among devices, while considering all their computing/networking heterogeneities and energy constraints, so as to fulfill all the desired analytics with high accuracy and/or within the required timelines. The proposed research program will make a leap towards empowering machine learning and data analytics on networks of heterogeneous edge devices by laying the foundations of the novel paradigm of multi-access edge intelligence (MEI). MEI will establish the design requirements and real-time algorithmic procedures that enable the execution of one or multiple (possibly correlated) learning/analytics tasks on optimized/adaptive clusters of wireless edge devices with heterogeneous communications, processing, and energy capacities. It will also involve the joint optimization of physical (i.e., networking/computing) resources, network formations, and learning models, while accommodating physical heterogeneities, network uncertainties, and mobility considerations, so as to achieve the desired learning/analytics quality indicators for different types of applications. In addition, the program will establish a Canadian MEI research and testing hub at Queen's University that promotes MEI research and validates the developed MEI innovations both in this program and by other Canadian researchers and industries. Training highly qualified personnel is also an important and integral goal of this program. This training will include experiences in network design, edge computing techniques, distributed data analytics, resource optimization, and hardware/software implementations of MEI. Two PhD, two MSc, and two undergraduate students will receive training through this research program. Given the very strong market demand on HQP in the information technology, telecommunications, data analytics, and edge intelligence sectors, the future employment of this program's trained HQP will accelerate disseminating next-generation MEI technologies to the Canadian industry.
日益增长的城市化和越来越多的物联网(IoT)采用标志着智慧城市时代的曙光,这个时代将严重依赖收集和分析大量数据来改善城市生活。然而,从延迟、成本和安全/隐私的角度来看,通过多个路由器和链路将这些海量分布式数据传输到整个城市的云服务器仍然是一个巨大的挑战。因此,对尽可能多的此类数据的分析必须接近甚至在其生成的边缘设备(例如传感器、智能手机、监控摄像头、无人机、联网车辆)上进行。由于资源有限,这些异类和无线连接的设备必须作为多路访问边缘网络协同工作,以分布式方式执行此类分析。这种在多路访问边缘网络上实现智能的创新方向需要革命性的模式,这些模式可以在设备之间联合动态地分配资源和任务,同时考虑设备的所有计算/网络异构性和能源限制,从而以高精度和/或在所需的时间线内完成所有所需的分析。拟议的研究计划将为多路访问边缘智能(MEI)的新范式奠定基础,从而实现在异类边缘设备网络上支持机器学习和数据分析的飞跃。MEI将制定设计要求和实时算法程序,以支持在具有不同通信、处理和能源能力的优化/自适应无线边缘设备集群上执行一个或多个(可能相关的)学习/分析任务。它还将涉及联合优化物理(即网络/计算)资源、网络结构和学习模型,同时适应物理异构性、网络不确定性和移动性考虑,以便为不同类型的应用程序实现所需的学习/分析质量指标。此外,该计划将在皇后大学建立一个加拿大梅研究和测试中心,促进梅的研究,并验证该计划以及其他加拿大研究人员和行业开发的梅创新。培养高素质的人才也是这一计划的重要和不可或缺的目标。本次培训将包括网络设计、边缘计算技术、分布式数据分析、资源优化以及MEI硬件/软件实施方面的经验。两名博士、两名硕士和两名本科生将通过这一研究计划接受培训。鉴于信息技术、电信、数据分析和边缘情报行业对HQP的非常强劲的市场需求,该项目训练有素的HQP的未来就业将加快向加拿大行业传播下一代MEI技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sorour, Sameh其他文献

Severity-Based Prioritized Processing of Packets with Application in VANETs
  • DOI:
    10.1109/tmc.2019.2892980
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Al-fuqaha, Ala;Mohammed, Ihab;Sorour, Sameh
  • 通讯作者:
    Sorour, Sameh
Indoor Localization and Radio Map Estimation Using Unsupervised Manifold Alignment with Geometry Perturbation
  • DOI:
    10.1109/tmc.2015.2510631
  • 发表时间:
    2016-11-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Majeed, Khaqan;Sorour, Sameh;Valaee, Shahrokh
  • 通讯作者:
    Valaee, Shahrokh
On Using Dual Interfaces With Network Coding for Delivery Delay Reduction
Dynamic Task Allocation for Mobile Edge Learning
  • DOI:
    10.1109/tmc.2021.3137017
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Mohammad, Umair;Sorour, Sameh;Hefeida, Mohamed
  • 通讯作者:
    Hefeida, Mohamed
Joint Indoor Localization and Radio Map Construction with Limited Deployment Load
  • DOI:
    10.1109/tmc.2014.2343636
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Sorour, Sameh;Lostanlen, Yves;Majeed, Khaqan
  • 通讯作者:
    Majeed, Khaqan

Sorour, Sameh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sorour, Sameh', 18)}}的其他基金

Enabling Intelligence on Multi-Access Edge Networks with Heterogeneous Resources
实现异构资源多接入边缘网络的智能化
  • 批准号:
    RGPIN-2020-06919
  • 财政年份:
    2020
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Intelligence on Multi-Access Edge Networks with Heterogeneous Resources
实现异构资源多接入边缘网络的智能化
  • 批准号:
    DGECR-2020-00330
  • 财政年份:
    2020
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

RAPID: Evaluation of an Artificial Intelligence-enhanced Edge Sensor System for Multi-Hazard Monitoring and Detection
RAPID:评估用于多危险监测和检测的人工智能增强型边缘传感器系统
  • 批准号:
    2346568
  • 财政年份:
    2023
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Standard Grant
Development, multi-ancestry international validation, algorithmic audit, and prospective silent trial evaluation of PRISM - A globally accessible, patient-oriented artificial intelligence-based model to predict the presence of clinically significant prost
PRISM 的开发、多祖先国际验证、算法审核和前瞻性静默试验评估 - 一种全球可访问、面向患者的基于人工智能的模型,用于预测具有临床意义的前列腺的存在
  • 批准号:
    479908
  • 财政年份:
    2023
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Operating Grants
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
  • 批准号:
    10816667
  • 财政年份:
    2023
  • 资助金额:
    $ 2.32万
  • 项目类别:
Artificial intelligence empowered multi-modal biomedical imaging
人工智能赋能多模态生物医学成像
  • 批准号:
    IM230100002
  • 财政年份:
    2023
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Mid-Career Industry Fellowships
True Computational Bio-Mimetics Explored by Multi-Physics Coupling Simulation for Both Free Flight and Intelligence in Insects
通过多物理耦合模拟探索真正的计算仿生学,以实现昆虫的自由飞行和智能
  • 批准号:
    23H00475
  • 财政年份:
    2023
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CAREER: Rethinking PIM-Assisted GPU Computing for Multi-Tenant Artificial Intelligence
职业:重新思考用于多租户人工智能的 PIM 辅助 GPU 计算
  • 批准号:
    2239638
  • 财政年份:
    2023
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Continuing Grant
Research on Prediction of Cardiac Disease Outcomes Using Multi-Modal Data Integration Approach Artificial Intelligence
利用多模态数据集成方法人工智能预测心脏病结果的研究
  • 批准号:
    23K15152
  • 财政年份:
    2023
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Artificial Intelligence meets Multi-Criteria Decision Aiding in smart sustainble cities
人工智能在可持续智慧城市中满足多标准决策辅助
  • 批准号:
    RGPIN-2020-05642
  • 财政年份:
    2022
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting Multi-Stability to Enable Mechanical Intelligence for Versatile and Efficient Control of Soft Robotic Locomotion and Manipulation
利用多稳定性实现机械智能,实现软机器人运动和操纵的多功能、高效控制
  • 批准号:
    2239673
  • 财政年份:
    2022
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Standard Grant
ULTIMATE: mUlti-Level Trustworthiness to IMprove the Adoption of hybrid arTificial intelligencE
最终:多级可信度以提高混合人工智能的采用
  • 批准号:
    10038467
  • 财政年份:
    2022
  • 资助金额:
    $ 2.32万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了