SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
基本信息
- 批准号:10816667
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAddressAdultAlgorithmsArizonaArtificial IntelligenceBiological AssayBiological MarkersCardiovascular systemCaringCellular PhoneClinicClinicalClinical TrialsClinics and HospitalsCommunicationComputer Vision SystemsComputerized Medical RecordComputersCreatinineDataData SetDetectionDevelopmentDevicesDiagnosisDiseaseEarly DiagnosisElectrical EngineeringElectrocardiogramEnergy consumptionEngineeringEvaluationEventFatigueFutureGenderGoalsGuidelinesHealthHealth StatusHealthcareHomeHospitalsImageInkInstitutionIntelligenceLeadLearningMedicalMedical RecordsMicrofluidicsMissionModelingMonitorNational Institute of Biomedical Imaging and BioengineeringObservational StudyParticipantPatient MonitoringPatient-Focused OutcomesPatientsPreventionPrintingProcessProtocols documentationPublic Health InformaticsReaderRecordsRecurrenceResearchRiskRisk AssessmentRunningSamplingScientistSignal TransductionSkinStrategic visionSurvivorsSystemTechnical ExpertiseTechnologyTrainingTravelUreaUrineUrologistVisitWorkacute careage stratificationanalogartificial intelligence algorithmcare burdencohortcomorbiditydeep learningdemographicsdesigndetection assaydetection platformencryptionflexibilityfollow-uphealth managementhigh riskhospital readmissionimprovedinnovationinsightmobile applicationmodel designmortalitymultimodalitynext generationnon-invasive systempatient health informationpersonalized predictionspoint of carepoor health outcomereadmission ratesrisk predictionsensorsensor technologyskin patchsmartphone applicationtransmission processurinaryvolunteerwearable devicewireless
项目摘要
Acute kidney injury (AKI) is a commonly encountered medical problem that is associated with poor health
outcomes in survivors, including increased mortality and re-admission to the hospital. Despite their high-risk
status, only a small fraction (<10%) of patients receive specialized nephrologist follow-up after AKI episode.
The low rate of follow-up care is due to lack of clear guidelines as well as reluctance on part of patients due
to several reasons such as hospital fatigue, long travel times and unwillingness to add more doctors to the
care team. To address the gap in care for AKI survivors, we propose an artificial intelligence (AI) enabled,
MUlti-modal SEnsor (MUSE) platform for at-home use that can monitor patient health automatically, perform
risk assessment for AKI recurrence, and alert the patient to seek specialized care. MUSE comprises of – 1)
a colorimetric dipstick for capturing concentration of bio-markers (creatinine, urea, pH and lactate) in urine;
2) a near-field communication (NFC) powered stretchable, battery-less, single-lead electrocardiogram (ECG)
skin patch that records ECG since cardiovascular complications is a strong predictor for AKI recurrence; 3)
an AI-enabled mobile application that acquires sensor data (from urine sample and ECG) and runs an on-device deep learning fusion AI model to combine sensor data and patient medical record (past co-morbidities
and demographics) for precision and personalized predictions. We will harness capabilities of smartphone
for several key tasks - a) capture images of the dipstick sensor with built-in camera; b) act as NFC reader
for ECG patch; c) run the computer vision and AI algorithms natively on-board without requiring network
connection, and encrypt patient data locally. The AI model will be trained and validated on a large
retrospective dataset collected from patients at Mayo Clinic Hospital, and the sensor system functionality will
be validated with an observational study on 20 adult participants (10 healthy and 10 AKI patients) at Mayo.
The proposed research has the potential to drive innovations in producing the next generation of intelligent
wearables that performs fusion of multi-modal sensor data and EMR for early detection of underlying health
issues with high accuracy. A successful realization of the proposal aims will pave the way for a future, large-scale clinical trial with our sensor platform.
急性肾损伤(阿基)是一种常见的医疗问题,与健康状况不佳有关
幸存者的结局,包括死亡率增加和再次入院。尽管他们的高风险
在AKI患者中,只有一小部分(<10%)的患者在阿基发作后接受了专门的肾病学家随访。
随访率低的原因是缺乏明确的指导方针,以及部分患者不愿接受随访,
几个原因,如医院疲劳,长途旅行时间和不愿意增加更多的医生,
护理团队为了解决阿基幸存者护理方面的差距,我们提出了一种人工智能(AI),
多模态传感器(MUSE)平台,可在家中使用,可自动监测患者健康状况,
阿基复发的风险评估,并提醒患者寻求专业护理。MUSE包括:1)
用于捕获尿中生物标志物(肌酸酐、尿素、pH和乳酸盐)浓度的比色试纸;
2)近场通信(NFC)供电的可伸展、无电池、单导联心电图(ECG)
记录ECG的皮肤贴片,因为心血管并发症是阿基复发的强预测因子; 3)
支持AI的移动的应用程序,可获取传感器数据(来自尿样和ECG),并运行设备上的深度学习融合AI模型,以将联合收割机传感器数据和患者病历(过去的合并症)结合起来
和人口统计数据)进行精确和个性化的预测。我们将利用智能手机的功能
用于几项关键任务- a)使用内置摄像头捕获油尺传感器的图像; B)充当NFC读取器
对于ECG贴片; c)在不需要网络的情况下在本机上运行计算机视觉和AI算法
连接,并在本地加密患者数据。人工智能模型将在大型
从马约诊所医院的患者中收集的回顾性数据集,传感器系统功能将
通过在马约对20名成人参与者(10名健康和10名阿基患者)进行的观察性研究进行验证。
拟议的研究有可能推动下一代智能制造的创新。
可穿戴设备,执行多模态传感器数据和EMR的融合,以早期检测潜在的健康状况
高精度的问题。该提案目标的成功实现将为未来使用我们的传感器平台进行大规模临床试验铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Imon Banerjee其他文献
Imon Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Imon Banerjee', 18)}}的其他基金
Flexible NLP toolkit for automatic curation of outcomes for breast cancer patients
灵活的 NLP 工具包,用于自动治疗乳腺癌患者的结果
- 批准号:
10420233 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Flexible NLP toolkit for automatic curation of outcomes for breast cancer patients
灵活的 NLP 工具包,用于自动治疗乳腺癌患者的结果
- 批准号:
10675009 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
TCIA Sustainment and Scalability - Platforms for Quantitative Imaging Informatics in Precision Medicine
TCIA 持续性和可扩展性 - 精准医学中的定量成像信息学平台
- 批准号:
10227670 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
TCIA Sustainment and Scalability - Platforms for Quantitative Imaging Informatics in Precision Medicine
TCIA 持续性和可扩展性 - 精准医学中的定量成像信息学平台
- 批准号:
10013134 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
TCIA Sustainment and Scalability - Platforms for Quantitative Imaging Informatics in Precision Medicine
TCIA 持续性和可扩展性 - 精准医学中的定量成像信息学平台
- 批准号:
9753190 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant