Smart skin for control of wall-bounded turbulent flows

用于控制壁面湍流的智能蒙皮

基本信息

  • 批准号:
    RGPIN-2020-07231
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

A boundary layer is a thin layer of fluid in the immediate vicinity of a solid surface where fluid velocity transitions from the velocity of the solid surface to the bulk fluid velocity. The shear stress in the fluid generates this velocity gradient, and projects as `skin-friction' on the surface. In most industrial situations, for example, the flow over an aircraft or inside a pipeline, the motions of fluid elements in the boundary layer are chaotic. Such a fluid layer is known as a turbulent boundary layer (TBL), and has a larger velocity gradient that generates greater skin-friction. In addition, when an increasing pressure gradient is imposed on a TBL, like in a diffuser or on an aircraft wing, the TBL may separate from the surface. This generates `pressure drag' and strong fluid-structure interactions. As a result, the TBL is the chief source of high fuel consumption, pollution, and structural vibration in aircrafts, submersibles, ships, and pipelines. Due to this integral effect, any progress in the control of TBLs will have a profound impact on our socio-economic and environmental protection needs. The subject of this research program is the control of attached and separated TBLs using a novel `smart skin'. To achieve this goal, we will first experimentally characterize the surface pressure of large-scale motions in attached and separated TBLs to develop a predictive model for turbulence control. In parallel, we will develop deformable surfaces that can generate on-demand local surface depression or protrusion. Linear actuators, with a frequency and displacement that matches the pressure footprint, will be integrated under a deformable skin. We will implement an array of active deformable panels and surface pressure sensors into a `smart skin'. Finally, the performance of the `smart skin' will be evaluated in a closed-loop system for active control of attached and separated TBLs. In the long-term, the proposed program will increase our fundamental knowledge of coherent motions in TBLs and provide guidelines on how to control TBLs. The developed `smart skin' will make it possible to manipulate a variety of turbulent flows including TBLs. The smart skin will also become a test-bench for the application of advanced control algorithms, artificial intelligence, and machine learning. Such an approach can ultimately modernize how we handle turbulence. It can make a breakthrough by bringing turbulence control to a variety of industrial sectors to increase efficiency and reduce environmental footprints. In addition, the multidisciplinary nature of this research program will train highly qualified personnel who are trained in a variety of disciplines.
边界层是固体表面附近的一层薄薄的流体,其中流体速度从固体表面的速度转变为整体流体速度。流体中的剪切应力产生了这种速度梯度,并在表面上以“表面摩擦”的形式投射出来。在大多数工业情况下,例如,飞机上的流动或管道内的流动,边界层中流体元素的运动是混沌的。这样的流体层被称为湍流边界层(TBL),它具有较大的速度梯度,从而产生较大的表面摩擦。此外,当压力梯度增加到TBL上时,如在扩散器或飞机机翼上,TBL可能会从表面分离。这就产生了“压力阻力”和强烈的流体-结构相互作用。因此,TBL是飞机、潜水器、船舶和管道中高燃料消耗、污染和结构振动的主要来源。由于这一整体效应,在管制有毒物质方面的任何进展,都将对我们的社会经济和环境保护需要产生深远的影响。本研究项目的主题是使用一种新型的“智能皮肤”来控制附着和分离的TBLs。为了实现这一目标,我们将首先通过实验表征附着和分离TBLs大尺度运动的表面压力,以开发湍流控制的预测模型。同时,我们将开发可变形表面,可以按需产生局部表面凹陷或突出。线性执行器的频率和位移与压力足迹相匹配,将集成在可变形的外壳下。我们将在“智能皮肤”中实现一系列可变形面板和表面压力传感器。最后,“智能皮肤”的性能将在一个闭环系统中进行评估,用于主动控制附着和分离的tbl。从长远来看,该计划将增加我们对TBLs中相干运动的基本知识,并为如何控制TBLs提供指导。开发的“智能皮肤”将使操纵包括tbl在内的各种湍流成为可能。智能皮肤也将成为先进控制算法、人工智能和机器学习应用的试验台。这种方法最终可以使我们处理湍流的方式现代化。它可以通过将湍流控制引入各种工业部门来提高效率并减少环境足迹,从而取得突破。此外,该研究计划的多学科性质将培养在各种学科中受过训练的高素质人才。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ghaemi, Sina其他文献

On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments
  • DOI:
    10.1007/s00348-015-1909-7
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Scarano, Fulvio;Ghaemi, Sina;Sciacchitano, Andrea
  • 通讯作者:
    Sciacchitano, Andrea
Effect of vane sweep angle on vortex generator wake
  • DOI:
    10.1007/s00348-018-2666-1
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Wang, Sen;Ghaemi, Sina
  • 通讯作者:
    Ghaemi, Sina
Turbulent channel flow over riblets with superhydrophobic coating
  • DOI:
    10.1016/j.expthermflusci.2018.02.001
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Abu Rowin, Wagih;Hou, Jianfeng;Ghaemi, Sina
  • 通讯作者:
    Ghaemi, Sina
Multi-pass light amplification for tomographic particle image velocimetry applications
  • DOI:
    10.1088/0957-0233/21/12/127002
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ghaemi, Sina;Scarano, Fulvio
  • 通讯作者:
    Scarano, Fulvio
Particle image and tracking velocimetry of solid-liquid turbulence in a horizontal channel flow
  • DOI:
    10.1016/j.ijmultiphaseflow.2018.12.007
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ahmadi, Farzad;Ebrahimian, Masoud;Ghaemi, Sina
  • 通讯作者:
    Ghaemi, Sina

Ghaemi, Sina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ghaemi, Sina', 18)}}的其他基金

Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPIN-2020-07231
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPAS-2020-00127
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Nanoscale materials for increasing the performance of cooling systems
用于提高冷却系统性能的纳米材料
  • 批准号:
    571010-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Distributed Electric Propulsion For Aerodynamic Efficiency and Control
用于提高空气动力效率和控制的分布式电力推进
  • 批准号:
    571051-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPAS-2020-00127
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Modeling and wind tunnel testing of a coaxial helicopter rotor
同轴直升机旋翼的建模和风洞测试
  • 批准号:
    537173-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPAS-2020-00127
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPIN-2020-07231
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Surfactants for Reduction of Drag in Geothermal Systems
用于减少地热系统阻力的表面活性剂
  • 批准号:
    531190-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Reduction of skin-friction in large-scale turbulent flows using superhydrophobic surfaces
使用超疏水表面减少大规模湍流中的表面摩擦
  • 批准号:
    RGPIN-2014-04320
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

羊驼酪氨酸酶相关蛋白1基因及其功能的研究
  • 批准号:
    30671512
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bacteriology Core
细菌学核心
  • 批准号:
    10549642
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Characterization of passive and active whole-body heat stress responses in obese and non-obese adults
肥胖和非肥胖成人被动和主动全身热应激反应的特征
  • 批准号:
    10675123
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
The molecular basis of fatty acid taste in Aedes aegypti
埃及伊蚊脂肪酸味道的分子基础
  • 批准号:
    10679953
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Evaluating the Effects of Animal Therapy on Anxiety in Pediatric Dental Patients
评估动物疗法对小儿牙科患者焦虑的影响
  • 批准号:
    10649010
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
A comparative evaluation of overdose prevention programs in New York City and Rhode Island
纽约市和罗德岛州药物过量预防计划的比较评估
  • 批准号:
    10629749
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Data Management and Bioinformatics
数据管理和生物信息学
  • 批准号:
    10633367
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Role of Skin Barrier and Immune Alterations in Allergic Sensitization
皮肤屏障和免疫改变在过敏性致敏中的作用
  • 批准号:
    10633370
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Massage for GAD: Neuroimaging and clinical correlates of response
广泛性焦虑症的按摩:神经影像学和反应的临床相关性
  • 批准号:
    10665241
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Exploring the Collaborative Cross resource to identify different phenotypes of Lyme neuroborreliosis and disease-contributing genetic factors
探索协作交叉资源以确定莱姆神经疏螺旋体病的不同表型和疾病致病遗传因素
  • 批准号:
    10666026
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了