Smart skin for control of wall-bounded turbulent flows

用于控制壁面湍流的智能蒙皮

基本信息

  • 批准号:
    RGPIN-2020-07231
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

A boundary layer is a thin layer of fluid in the immediate vicinity of a solid surface where fluid velocity transitions from the velocity of the solid surface to the bulk fluid velocity. The shear stress in the fluid generates this velocity gradient, and projects as `skin-friction' on the surface. In most industrial situations, for example, the flow over an aircraft or inside a pipeline, the motions of fluid elements in the boundary layer are chaotic. Such a fluid layer is known as a turbulent boundary layer (TBL), and has a larger velocity gradient that generates greater skin-friction. In addition, when an increasing pressure gradient is imposed on a TBL, like in a diffuser or on an aircraft wing, the TBL may separate from the surface. This generates `pressure drag' and strong fluid-structure interactions. As a result, the TBL is the chief source of high fuel consumption, pollution, and structural vibration in aircrafts, submersibles, ships, and pipelines. Due to this integral effect, any progress in the control of TBLs will have a profound impact on our socio-economic and environmental protection needs. The subject of this research program is the control of attached and separated TBLs using a novel `smart skin'. To achieve this goal, we will first experimentally characterize the surface pressure of large-scale motions in attached and separated TBLs to develop a predictive model for turbulence control. In parallel, we will develop deformable surfaces that can generate on-demand local surface depression or protrusion. Linear actuators, with a frequency and displacement that matches the pressure footprint, will be integrated under a deformable skin. We will implement an array of active deformable panels and surface pressure sensors into a `smart skin'. Finally, the performance of the `smart skin' will be evaluated in a closed-loop system for active control of attached and separated TBLs. In the long-term, the proposed program will increase our fundamental knowledge of coherent motions in TBLs and provide guidelines on how to control TBLs. The developed `smart skin' will make it possible to manipulate a variety of turbulent flows including TBLs. The smart skin will also become a test-bench for the application of advanced control algorithms, artificial intelligence, and machine learning. Such an approach can ultimately modernize how we handle turbulence. It can make a breakthrough by bringing turbulence control to a variety of industrial sectors to increase efficiency and reduce environmental footprints. In addition, the multidisciplinary nature of this research program will train highly qualified personnel who are trained in a variety of disciplines.
边界层是紧邻固体表面的流体薄层,其中流体速度从固体表面的速度过渡到整体流体速度。流体中的剪切应力产生这种速度梯度,并在表面上投影为“表面摩擦”。在大多数工业情况下,例如,在飞行器上或管道内的流动中,边界层中流体元素的运动是混沌的。这样的流体层被称为湍流边界层(TBL),并且具有产生更大的表面摩擦的更大的速度梯度。此外,当增加的压力梯度施加在TBL上时,如在扩散器中或在飞机机翼上,TBL可能与表面分离。这就产生了“压力阻力”和强烈的流体-结构相互作用。因此,TBL是飞机、潜水器、船舶和管道中的高燃料消耗、污染和结构振动的主要来源。由于这一整体效应,控制TBL的任何进展都将对我们的社会经济和环境保护需求产生深远影响。 这项研究计划的主题是使用一种新的“智能皮肤”控制附着和分离的TBL。为了实现这一目标,我们将首先通过实验来表征附着和分离的TBL中大规模运动的表面压力,以开发用于湍流控制的预测模型。同时,我们将开发可变形的表面,可以生成按需的局部表面凹陷或突起。线性致动器,具有与压力足迹相匹配的频率和位移,将集成在可变形的皮肤下。我们将在“智能皮肤”中安装一系列主动可变形面板和表面压力传感器。最后,将在一个闭环系统中评估“智能蒙皮”的性能,以便对附着和分离的TBL进行主动控制。从长远来看,拟议的计划将增加我们的TBL相干运动的基础知识,并提供如何控制TBL的指导方针。开发的“智能皮肤”将使操纵包括TBL在内的各种湍流成为可能。智能皮肤还将成为先进控制算法、人工智能和机器学习应用的测试平台。这种方法最终可以使我们处理湍流的方式现代化。它可以通过将湍流控制引入各种工业部门来实现突破,以提高效率并减少环境足迹。此外,该研究计划的多学科性质将培养高素质的人才谁是在各种学科的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ghaemi, Sina其他文献

On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments
  • DOI:
    10.1007/s00348-015-1909-7
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Scarano, Fulvio;Ghaemi, Sina;Sciacchitano, Andrea
  • 通讯作者:
    Sciacchitano, Andrea
Effect of vane sweep angle on vortex generator wake
  • DOI:
    10.1007/s00348-018-2666-1
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Wang, Sen;Ghaemi, Sina
  • 通讯作者:
    Ghaemi, Sina
Turbulent channel flow over riblets with superhydrophobic coating
  • DOI:
    10.1016/j.expthermflusci.2018.02.001
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Abu Rowin, Wagih;Hou, Jianfeng;Ghaemi, Sina
  • 通讯作者:
    Ghaemi, Sina
Multi-pass light amplification for tomographic particle image velocimetry applications
  • DOI:
    10.1088/0957-0233/21/12/127002
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ghaemi, Sina;Scarano, Fulvio
  • 通讯作者:
    Scarano, Fulvio
A novel approach for drag reduction using polymer coating
  • DOI:
    10.1016/j.oceaneng.2021.109895
  • 发表时间:
    2021-09-30
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Abu Rowin, Wagih;Asha, Anika Benozir;Ghaemi, Sina
  • 通讯作者:
    Ghaemi, Sina

Ghaemi, Sina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ghaemi, Sina', 18)}}的其他基金

Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPAS-2020-00127
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Nanoscale materials for increasing the performance of cooling systems
用于提高冷却系统性能的纳米材料
  • 批准号:
    571010-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Distributed Electric Propulsion For Aerodynamic Efficiency and Control
用于提高空气动力效率和控制的分布式电力推进
  • 批准号:
    571051-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPIN-2020-07231
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPAS-2020-00127
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Modeling and wind tunnel testing of a coaxial helicopter rotor
同轴直升机旋翼的建模和风洞测试
  • 批准号:
    537173-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPAS-2020-00127
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPIN-2020-07231
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Surfactants for Reduction of Drag in Geothermal Systems
用于减少地热系统阻力的表面活性剂
  • 批准号:
    531190-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Reduction of skin-friction in large-scale turbulent flows using superhydrophobic surfaces
使用超疏水表面减少大规模湍流中的表面摩擦
  • 批准号:
    RGPIN-2014-04320
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

羊驼酪氨酸酶相关蛋白1基因及其功能的研究
  • 批准号:
    30671512
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bacteriology Core
细菌学核心
  • 批准号:
    10549642
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Targeting the CCR6-CCL20 pathway for treatment of psoriatic joint and entheseal inflammation
靶向 CCR6-CCL20 通路治疗银屑病关节和附着点炎症
  • 批准号:
    10699251
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Mechanisms of New-Onset Autoimmunity/Longitudinal Immune Systems Analysis (MONA-LISA)
新发自身免疫/纵向免疫系统分析(MONA-LISA)的机制
  • 批准号:
    10655219
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
A Dry Electrode for Universal Accessibility to EEG
用于普遍获取脑电图的干电极
  • 批准号:
    10761609
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Regulation of wound healing pathways by NLRP10 in cutaneous Leishmaniasis
NLRP10 对皮肤利什曼病伤口愈合途径的调节
  • 批准号:
    10783649
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Identifying epigenetic factors in control of epidermal stem cell longevity in the adult skin
识别控制成人皮肤表皮干细胞寿命的表观遗传因素
  • 批准号:
    10723212
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Engineering the open porous nanofibrous microsphere integrated fibrillar hydrogel for the co-delivery of antibacterial and angiogenic agents aimed at the rapid diabetic wound repair
设计开放多孔纳米纤维微球集成纤维水凝胶,用于共同递送抗菌剂和血管生成剂,旨在快速修复糖尿病伤口
  • 批准号:
    10737115
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Cell cycle control of cell polarity and fate in epidermal morphogenesis
表皮形态发生中细胞极性和命运的细胞周期控制
  • 批准号:
    10608036
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
A novel, non-antibiotic, microbiome-directed agent to prevent post-surgical infection
一种新型、非抗生素、微生物组导向剂,用于预防术后感染
  • 批准号:
    10600765
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了