Architectural frameworks to leverage new hardware technologies for emerging data-intensive applications
利用新硬件技术实现新兴数据密集型应用程序的架构框架
基本信息
- 批准号:RGPIN-2021-03542
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Important emerging data-intensive applications in machine learning and robotics utilize computing systems at different levels: datacenters, edge devices, and on resource-constrained autonomous vehicles (e.g., drones). These applications require processing significant amounts of data under various system constraints and their scale and complexity are today limited by constraints in memory, compute, and network capabilities. Advances in hardware technologies such as disaggregated memory, near-data processing, and application-specific acceleration offer promising opportunities to address these bottlenecks. Leveraging these technologies effectively requires co-designing algorithms, systems, and architectures. This research program aims to develop new architectural frameworks and cross-layer solutions to leverage new hardware technologies in three contexts: data centers, edge devices, and low-power autonomous vehicles. The proposed research aims to tackle the following major thrusts. First, we aim to investigate the system challenges to efficiently incorporate memory disaggregation in datacenters. Disaggregation rethinks the traditional notion of datacenters comprising monolithic servers with memory attached over the memory bus. Instead processors are connected to network-attached pools of memory that are independently operated. Disaggregation offers an opportunity to meet the significant memory needs of emerging data-intensive applications such training of large-scale machine learning models at low cost. Second, we aim to investigate the implications of the push towards edge-based computing in large-scale data-intensive applications. Important applications for machine learning in health care, mobile applications, financial institutions require privacy of user data, necessitating partial training of data on edge devices/servers. These applications typically use federated and incremental training to train machine learning models while preserving the privacy of user data. We aim to tackle the architectural and programmability challenges associated with efficient deployment of federated learning in edge devices. Third, we aim to investigate the architectural challenges of supporting robotics tasks on resource-constrained autonomous vehicles such as Unmanned Aerial Vehicles (UAVs) and vehicles for micromobility. These systems are projected to have tremendous growth in demand with use cases in healthcare, rescue, delivery, and mobility. These vehicles are required to support data-intensive tasks such as processing sensor data from LIDAR, cameras, etc., complex localization and mapping, and DNN inference, while still being heavily constrained in power and compute capability. This thrust will involve 1) investigating key compute bottlenecks for each task; 2) developing infrastructure to enable cross-layer research for each application domain; 3) developing hardware-software co-designs to enable efficient processing of these tasks.
机器学习和机器人技术中的重要新兴数据密集型应用利用不同级别的计算系统:数据中心、边缘设备和资源受限的自动车辆(例如无人机)。这些应用程序需要在各种系统约束下处理大量数据,其规模和复杂性目前受到内存、计算和网络能力的限制。分散存储、近数据处理和特定于应用程序的加速等硬件技术的进步为解决这些瓶颈提供了有希望的机会。有效地利用这些技术需要共同设计算法、系统和体系结构。该研究计划旨在开发新的架构框架和跨层解决方案,以在三个环境中利用新的硬件技术:数据中心、边缘设备和低功耗自动驾驶汽车。拟议的研究旨在解决以下主要问题。首先,我们的目标是研究在数据中心中有效整合内存分解所面临的系统挑战。拆分重新思考了数据中心的传统概念,数据中心由单片服务器组成,内存通过内存总线连接。相反,处理器连接到网络连接的内存池,这些内存池独立运行。分解提供了一个机会,以满足新兴数据密集型应用程序的大量存储需求,例如以低成本训练大规模机器学习模型。其次,我们的目标是调查在大规模数据密集型应用中推动基于边缘计算的影响。机器学习在医疗保健、移动应用、金融机构中的重要应用要求用户数据的隐私,这就需要对边缘设备/服务器上的数据进行部分训练。这些应用程序通常使用联合和增量训练来训练机器学习模型,同时保护用户数据的隐私。我们的目标是解决与在边缘设备中高效部署联合学习相关的架构和可编程性挑战。第三,我们的目标是调查在资源受限的自动驾驶车辆上支持机器人任务的架构挑战,例如无人机(UAV)和微移动车辆。随着医疗保健、救援、交付和移动性的使用案例,这些系统的需求预计将大幅增长。这些车辆需要支持数据密集型任务,如处理来自激光雷达、相机等的传感器数据,复杂的定位和测绘,以及DNN推理,同时仍然在功率和计算能力方面受到严重限制。这一推进将涉及1)调查每项任务的关键计算瓶颈;2)开发基础设施,以实现对每个应用领域的跨层研究;3)开发硬件-软件协同设计,以实现这些任务的高效处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vijaykumar, Nandita其他文献
Vijaykumar, Nandita的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vijaykumar, Nandita', 18)}}的其他基金
Architectural frameworks to leverage new hardware technologies for emerging data-intensive applications
利用新硬件技术实现新兴数据密集型应用程序的架构框架
- 批准号:
RGPIN-2021-03542 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Architectural frameworks to leverage new hardware technologies for emerging data-intensive applications
利用新硬件技术实现新兴数据密集型应用程序的架构框架
- 批准号:
DGECR-2021-00446 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Diversity Oriented Clicking - Streamlined Synthesis of Molecular Frameworks
面向多样性的点击——分子框架的简化合成
- 批准号:
DE240100449 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Early Career Researcher Award
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
- 批准号:
24K17650 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Hydrogen-Bonded Organic Frameworks Nanoparticles for Ultrasound-Activated, Genetically-Targeted Neuromodulation
职业:用于超声激活、基因靶向神经调节的氢键有机框架纳米颗粒
- 批准号:
2340964 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
STEM Teacher Effectiveness and Retention in High-Need Schools: Combining Equity & Ecological Frameworks
高需求学校的 STEM 教师效能和保留率:结合公平
- 批准号:
2345129 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Improving Legal Frameworks to Support Online Child Sex Abuse Prosecutions
完善法律框架以支持在线儿童性虐待起诉
- 批准号:
DP240101649 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Projects
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant














{{item.name}}会员




