Combinatorial Approaches to Deformation and Degeneration in Algebraic Geometry

代数几何中变形和退化的组合方法

基本信息

  • 批准号:
    RGPIN-2021-02956
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Algebraic geometry is the study of solution sets of systems of polynomial equations. Such sets, called algebraic varieties, appear in connection to numerous fields ranging from theoretical physics and computational biology to computer science and statistics. In general, it is an extremely challenging problem to understand the structure of varieties. A common technique in algebraic geometry is to degenerate or deform a variety to one whose structure is easier to understand. The overarching goal of my program of research is to gain new mathematical insight into algebraic geometry through the study of deformation and degeneration. In this program, I will make extensive use of a special class of geometric objects called toric varieties. They are defined using especially simple equations, making them much easier to understand in detail. The first thematic area of my proposed research is the study of toric degenerations. By degenerating an arbitrary variety to a toric variety, one can use the easily accessible information obtained from the toric variety to gain knowledge about the original variety. However, such a degeneration may not exist in general. I will investigate how to explicitly construct such toric degenerations, and under what circumstances one can expect them to exist. This is a highly active topic, with many subtle questions and features. The second thematic area of my proposed research is combinatorial deformation theory. I will study how toric varieties, and other varieties with similar combinatorial structure, can be deformed into other varieties. This takes the opposite perspective of the first thematic area. Explicit solutions to deformation problems are often difficult to obtain. This motivates the study of deformation problems with extra structure. Such problems are often of significant interest in their own right, due to connections to other problems in algebraic geometry. This program of research will provide fundamental insights in pure mathematics, in particular, algebraic geometry. The proposed research will provide tools to address fundamental problems in mathematics, such as mirror symmetry, classification problems in algebraic geometry, and the existence of extremal metrics. My research will additionally advance the field of applied algebraic geometry, which has applications in a variety of disciplines such as biology, chemistry, and statistics. Finally, the impact of the proposed research will contribute to strengthening Canada's leadership in the study of pure mathematics, and will serve to help train a new generation of mathematicians in Canada.
代数几何是研究多项式方程组的解集。这样的集合,称为代数簇,出现在从理论物理和计算生物学到计算机科学和统计学的许多领域。一般来说,了解品种的结构是一个极具挑战性的问题。代数几何中的一个常见技术是将一个变量退化或变形为一个结构更容易理解的变量。我的研究计划的首要目标是通过变形和退化的研究获得新的数学见解代数几何。在这个程序中,我将广泛使用一类特殊的几何对象,称为复曲面簇。它们是用特别简单的方程定义的,使它们更容易详细理解。我建议的研究的第一个主题领域是研究复曲面退化。通过将任意簇退化为复曲面簇,人们可以利用从复曲面簇获得的容易获得的信息来获得关于原始簇的知识。然而,这样的退化一般可能不存在。我将研究如何明确地构建这样的环面退化,以及在什么情况下人们可以期望它们存在。这是一个非常活跃的话题,有许多微妙的问题和特征。我提出的研究的第二个主题领域是组合变形理论。我将研究复曲面变种和其他具有类似组合结构的变种如何变形为其他变种。这与第一个专题领域的观点相反。变形问题的显式解往往很难得到。这激发了对具有额外结构的变形问题的研究。由于与代数几何中的其他问题的联系,这些问题本身往往具有重要的意义。该研究计划将提供纯数学,特别是代数几何的基本见解。拟议的研究将提供工具来解决数学中的基本问题,如镜像对称,代数几何中的分类问题,以及极值度量的存在。我的研究将进一步推进应用代数几何领域,该领域在生物学,化学和统计学等各种学科中都有应用。最后,拟议研究的影响将有助于加强加拿大在纯数学研究中的领导地位,并将有助于培养加拿大新一代的数学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilten, Nathan其他文献

Ilten, Nathan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilten, Nathan', 18)}}的其他基金

Combinatorial Approaches to Deformation and Degeneration in Algebraic Geometry
代数几何中变形和退化的组合方法
  • 批准号:
    RGPIN-2021-02956
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
  • 批准号:
    RGPIN-2015-03933
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
  • 批准号:
    RGPIN-2015-03933
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
  • 批准号:
    RGPIN-2015-03933
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
  • 批准号:
    RGPIN-2015-03933
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
  • 批准号:
    RGPIN-2015-03933
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
  • 批准号:
    RGPIN-2015-03933
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
  • 批准号:
    2608627
  • 财政年份:
    2025
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
  • 批准号:
    AH/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
  • 批准号:
    EP/Y032640/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
  • 批准号:
    10080598
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    EU-Funded
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了