Continuous Passive Sensing for Bayesian Diagnostics in Mobile Health
移动医疗中贝叶斯诊断的连续被动传感
基本信息
- 批准号:RGPIN-2021-03457
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Existing healthcare systems are reactive rather than proactive. Limited time or finances often force people to postpone visits to their doctor. Even when people are able to make an appointment, clinics are overburdened and doctors have limited time with their patients. Mobile health (mHealth) is being viewed as a potential complement to in-person consultations that can relieve stress on overburdened healthcare systems. One major aspect of mHealth is the use of sensors embedded within commodity devices like smartphones and smartwatches to measure biosignals and detect symptoms. Such applications typically fall into one of two categories: (1) tools that continuously monitor a person's physiology and behaviors, and (2) tools that require explicit interaction with a device to reveal information about a symptom. These tools are often discussed independently, which is contrary to the Bayesian diagnostic process clinicians implicitly follow. Clinicians initially formulate a prior probability that their patients have a medical condition according to their medical history and self-reported symptoms, and that prior is then updated using diagnostic tests. The central idea guiding my research program is that the efficacy of diagnostic tests can be improved by incorporating continuous passive sensing. For example, a smartphone app that diagnoses influenza by automatically interpreting a visual rapid diagnostic test should be more confident in a positive result if the microphone on the user's smartphone has detected more coughing than usual or the temperature sensor on the user's smartwatch detects a fever. Although my work will be motivated by health applications, the primary contributions of this work will be made in computer science. My research program will produce new knowledge in ubiquitous computing, human-computer interaction, and various forms of applied sensing (e.g., signal processing, machine learning, computer vision). These contributions will come in the form of two major streams of research: (1) passive behavior, symptom, and physiological sensing, and (2) probabilistic models for combining the aforementioned components together. My research program will create a flexible framework that provides a holistic understanding of people's health or wellbeing. My program will produce new knowledge in multiple subfields of computer science. In ubiquitous computing, my work will uncover novel problems that can be addressed with applied sensing. In machine learning and statistics, my work will advance techniques for interpretable multimodal models and will demonstrate new ways of combining multimodal data to form a rich representation of a person's state. Lastly, in human-computer interaction, my work will elicit user-centered design considerations for future mHealth interventions.
现有的医疗保健系统是被动的,而不是主动的。有限的时间或资金往往迫使人们推迟去看医生。即使人们能够预约,诊所也负担过重,医生与病人在一起的时间有限。移动的健康(mHealth)被视为对面对面咨询的潜在补充,可以减轻负担过重的医疗保健系统的压力。mHealth的一个主要方面是使用嵌入在智能手机和智能手表等商品设备中的传感器来测量生物信号并检测症状。此类应用通常分为两类:(1)持续监测人的生理和行为的工具,以及(2)需要与设备进行显式交互以揭示有关症状的信息的工具。这些工具通常是独立讨论的,这与临床医生隐含遵循的贝叶斯诊断过程相反。临床医生最初根据他们的病史和自我报告的症状制定他们的患者患有医疗状况的先验概率,然后使用诊断测试更新先验概率。指导我的研究计划的中心思想是,诊断测试的有效性可以通过结合连续被动传感来提高。例如,如果用户智能手机上的麦克风检测到比平时更多的咳嗽,或者用户智能手表上的温度传感器检测到发烧,那么通过自动解释视觉快速诊断测试来诊断流感的智能手机应用程序应该对阳性结果更有信心。虽然我的工作将受到健康应用的激励,但这项工作的主要贡献将在计算机科学中做出。我的研究计划将产生无处不在的计算,人机交互和各种形式的应用传感(例如,信号处理、机器学习、计算机视觉)。这些贡献将以两个主要研究流的形式出现:(1)被动行为,症状和生理感知,以及(2)将上述组件组合在一起的概率模型。我的研究计划将创建一个灵活的框架,提供人们的健康或福祉的整体理解。我的课程将在计算机科学的多个子领域产生新的知识。在无处不在的计算中,我的工作将揭示可以通过应用传感来解决的新问题。在机器学习和统计学方面,我的工作将推进可解释的多模态模型的技术,并将展示结合多模态数据以形成一个人状态的丰富表示的新方法。最后,在人机交互方面,我的工作将为未来的移动健康干预措施引出以用户为中心的设计考虑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mariakakis, Alexander其他文献
Mariakakis, Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mariakakis, Alexander', 18)}}的其他基金
Continuous Passive Sensing for Bayesian Diagnostics in Mobile Health
移动医疗中贝叶斯诊断的连续被动传感
- 批准号:
RGPIN-2021-03457 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Continuous Passive Sensing for Bayesian Diagnostics in Mobile Health
移动医疗中贝叶斯诊断的连续被动传感
- 批准号:
DGECR-2021-00443 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
相似海外基金
A Platform for Detecting Postpartum Depression through Passive Mobile Sensing
通过被动移动传感检测产后抑郁症的平台
- 批准号:
23K17004 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Passive Mobile Sensingを用いた産後うつ症状検出基盤の国際的な拡張と透明性の向上
使用被动移动传感的产后抑郁症状检测平台的国际扩展和透明度
- 批准号:
23KK0209 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
I-Corps: Vehicle Lane-Keeping Through Pavement-Assisted Passive Sensing
I-Corps:通过路面辅助被动传感实现车辆车道保持
- 批准号:
2246710 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
I-Corps: Passive Infrared Sensor Technology Solution for Advanced Occupancy Sensing
I-Corps:用于高级占用感应的被动红外传感器技术解决方案
- 批准号:
2229358 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Continuous Passive Sensing for Bayesian Diagnostics in Mobile Health
移动医疗中贝叶斯诊断的连续被动传感
- 批准号:
RGPIN-2021-03457 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
SWIFT: Coexisting spectrally-dense communications and passive sensing in directed multi-hop sub-millimeter-wave networks
SWIFT:在定向多跳亚毫米波网络中共存频谱密集通信和无源传感
- 批准号:
2229560 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Using Wearable Passive Sensing to Predict Engagement in Binge Eating in Response to Negative Affect: A Multimethod Investigation of Predictive Utility, Feasibility, and Acceptability
使用可穿戴被动传感来预测对负面情绪的暴食反应:预测效用、可行性和可接受性的多方法研究
- 批准号:
10606680 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Passive mobile sensing and machine learning for the detection of drinking episodes
用于检测饮酒事件的被动移动传感和机器学习
- 批准号:
10349454 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Passive mobile sensing and machine learning for the detection of drinking episodes
用于检测饮酒事件的被动移动传感和机器学习
- 批准号:
10555250 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Seeing the Unseen: Passive RF Sensing via Learning
看到看不见的东西:通过学习进行无源射频传感
- 批准号:
2036236 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant














{{item.name}}会员




