High-performance computational methods for Partial Differential Equations and applications

偏微分方程的高性能计算方法及应用

基本信息

  • 批准号:
    RGPIN-2021-03502
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Partial Differential Equations (PDEs) are the basis of many mathematical models of physical/technological phenomena. The long-term goal of my research program involves the development and analysis of novel numerical methods for PDEs, and the development, testing and evaluation of mathematical software for the solution of PDEs on a variety of computer architectures.  This research has practical applications in finance and medicine, such as valuation of default risk and improvement of treatment strategies. Two of the main challenges of a computational scheme for PDEs are the discretization technique for the continuous problem, and the solution method for the resulting set of discrete algebraic equations. Models of physical phenomena often involve linear elliptic PDEs, the discretisation of which gives rise to large sparse linear systems of equations. Other models involve time-dependent PDEs, which often require the solution of large sparse linear systems at each timestep of the time-discretized problem. In developing and studying computational methods for solving large-scale PDE problems, two key issues have to be addressed -- the accuracy and the efficiency of the computations. Addressing these issues mainly depends on four factors (i) the convergence properties of the discretisation method; (ii) the computational complexity of the linear solver; (iii) the implementation of the discretization method and solver; (iv) the ability to exploit parallelism to a degree proportional to the model size. This last factor becomes particularly important when the size of the mathematical model, i.e. the number of discrete equations, is very large. These key issues will be addressed using the following methodologies: (a) High-order PDE discretisation methods: spline collocation; and low computational complexity solvers: FFT methods, Alternating Direction Implicit methods and domain decomposition techniques, with a scalable degree of parallelism. Discretization methods and solvers will be first developed for simple model problems, then extended to more difficult ones, e.g. problems with layers, discontinuities and nonlinearities. (b) Application of the proposed methods to financial derivatives valuation and glioma invasion in medicine. We will target current challenges including the stability of the methods, the efficient solution of the resulting linear systems of equations, and the adaptation of the methods to handle special properties of the problems' solutions. (c) Analysis and testing of the proposed methods for solving large models on parallel machines with many processors; performance evaluation of methods and machines for solving PDEs in terms of parallel time and memory complexity, communication complexity (on distributed memory machines), memory access latency (on GPUs), speedup, utilisation, load balancing and scalability. This research will have a direct and significant impact on the economy, health and the development of related fields of science.
部分微分方程(PDE)是许多物理/技术现象的数学模型的基础。我的研究计划的长期目标涉及对PDE的新数值方法的开发和分析,以及用于在各种计算机体系结构上解决PDE的数学软件的开发,测试和评估。这项研究在金融和医学方面具有实际应用,例如默认风险的价值和改善治疗策略。 PDE的计算方案的两个主要挑战是连续问题的离散技术,以及用于生成的离散代数方程组集的解决方案方法。物理现象的模型通常涉及线性椭圆形PDE,其离散化导致了大​​型的稀疏线性平衡系统。其他模型涉及时间依赖性PDE,通常需要在时间限制问题的每个时间步骤中解决大型稀疏线性系统的解决方案。在开发和研究解决大规模PDE问题的计算方法时,必须解决两个关键问题 - 计算的准确性和效率。解决这些问题主要取决于四个因素(i)离散方法的收敛属性; (ii)线性求解器的计算复杂性; (iii)实施离散方法和求解器; (iv)将并行性利用与模型大小成比例的能力。当数学模型的大小,即离散方程的数量非常大时,最后一个因素变得尤为重要。这些关键问题将使用以下方法解决:(a)高阶PDE离散方法:样条线搭配;和低计算复杂度求解器:FFT方法,交替方向隐式方法和域分解技术,具有可扩展的并行度。离散化方法和求解器将首先针对简单的模型问题开发,然后扩展到更困难的模型,例如层,不连续性和非线性问题。 (b)将拟议方法应用于金融衍生品的价值和胶质瘤入侵药物。我们将针对当前的挑战,包括方法的稳定性,最终的线性方程式线性系统的有效解决方案以及处理问题解决方案的特殊属性的方法。 (c)分析和测试提出的方法,用于在具有许多处理器的并行机上求解大型模型;根据并行时间和内存复杂性,通信复杂性(在分布式存储器上),内存访问延迟(在GPU上),加速,利用率,负载平衡和可扩展性来求解PDE的方法和机器的性能评估。这项研究将对经济,健康和相关科学领域的发展产生直接而重大的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christara, Christina其他文献

Christara, Christina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christara, Christina', 18)}}的其他基金

High-performance computational methods for Partial Differential Equations and applications
偏微分方程的高性能计算方法及应用
  • 批准号:
    RGPIN-2021-03502
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical methods for partial differential equations: algorithms and software on innovative computer architectures
偏微分方程的数值方法:创新计算机架构上的算法和软件
  • 批准号:
    89741-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical methods for partial differential equations: algorithms and software on innovative computer architectures
偏微分方程的数值方法:创新计算机架构上的算法和软件
  • 批准号:
    89741-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical methods for partial differential equations: algorithms and software on innovative computer architectures
偏微分方程的数值方法:创新计算机架构上的算法和软件
  • 批准号:
    89741-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient GPU implementation of numerical methods for scientific computing
科学计算数值方法的高效 GPU 实现
  • 批准号:
    423568-2012
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)

相似国自然基金

复杂海洋环境多水下结构系统振动声辐射分析的半解析联合计算方法
  • 批准号:
    12372196
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
极端强降雨下山区双向增强复合路基工作机理及其计算方法研究
  • 批准号:
    52378340
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于量子化学计算构建的荧光传感器阵列对西红花快速鉴定新方法的研究
  • 批准号:
    82374000
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于稀疏视点采集的神经渲染虚拟视点感知计算与增强方法研究
  • 批准号:
    62302105
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于QM/MM的计算机辅助药物设计方法对去泛素化酶(DUBs)共价小分子抑制剂的设计与研究
  • 批准号:
    82304385
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
  • 批准号:
    2348884
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Joint Estimate Diffusion Imaging (JEDI) for improved Tissue Characterization and Neural Connectivity in Aging and Alzheimer's Disease
联合估计扩散成像 (JEDI) 可改善衰老和阿尔茨海默病的组织表征和神经连接
  • 批准号:
    10662911
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
A democratized platform for mapping the spatial epigenome in tissue
用于绘制组织空间表观基因组图谱的民主化平台
  • 批准号:
    10822023
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Applying Computational Phenotypes To Assess Mental Health Disorders Among Transgender Patients in the United States
应用计算表型评估美国跨性别患者的心理健康障碍
  • 批准号:
    10604723
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Chromosomal aberration detection in FFPE tissue using proximity ligation sequencing
使用邻近连接测序检测 FFPE 组织中的染色体畸变
  • 批准号:
    10759887
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了