Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
基本信息
- 批准号:RGPIN-2015-05648
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Partial Differential Equations (PDEs) are the basis of many mathematical models of important physical and technological phenomena.
This project involves the development and analysis of numerical methods for PDEs, and the development, testing and evaluation of mathematical software for the solution of PDEs on a variety of computer architectures.
Two of the main components of a computational scheme for PDEs are the discretisation technique for the continuous problem and the solution method for the resulting set of discrete algebraic equations.
Models of physical phenomena often involve linear elliptic Boundary Value Problems for PDEs, the discretisation of which, in turn, gives rise to large sparse linear systems of algebraic equations.
Other models may involve time-dependent PDEs, which often require the solution of large sparse linear systems at each time step of the time-discretized problem.
In developing and studying computational methods for solving large-scale PDE problems, two key issues have to be addressed -- namely, the accuracy and the efficiency of the computations.These mainly depend on
(i) the convergence properties of the discretisation method;
(ii) the computational complexity of the linear solver;
(iii) the implementation of the discretisation method and solver; and
(iv) the ability to exploit parallelism to a degree proportional to the size of the model.
This last factor becomes particularly important when the size of the mathematical model (i.e., the number of discrete equations) is very large.
This research includes the following components:
(a)
Development and analysis of high-order PDE discretisation methods, such as spline collocation methods,
and low computational complexity solvers, such as FFT methods, multigrid schemes,
domain decomposition techniques and hybrid approaches, with a scalable degree of parallelism.
Discretisation methods and solvers are first developed for simple model problems, then extended to handle more difficult problems,
such as problems with layers, rough behaviour, ill-conditioning, discontinuities, etc.
(b)
Implementation and testing of the proposed methods for solving large models on parallel machines with many processors.
This includes the performance evaluation of methods and machines for solving PDEs
in terms of parallel time and memory complexity, communication complexity (on distributed memory machines),
memory access latency (on GPU machines), speedup, utilisation, load balancing and scalability.
(c)
Application and testing of the proposed methods in the solution of problems such as financial derivatives valuation and medical applications.
These areas are strategically important having a direct impact on the economy and the development of other related fields of science.
偏微分方程是许多重要物理和技术现象的数学模型的基础。
该项目包括开发和分析偏微分方程组的数值方法,以及开发、测试和评估在各种计算机体系结构上求解偏微分方程组的数学软件。
偏微分方程组计算格式的两个主要组成部分是连续问题的离散化技术和离散代数方程组的求解方法。
物理现象的模型通常涉及偏微分方程组的线性椭圆型边值问题,其离散化又产生大型稀疏线性代数方程组。
其他模型可能涉及与时间相关的偏微分方程组,这通常需要在时间离散化问题的每个时间步长求解大型稀疏线性系统。
在开发和研究求解大规模偏微分方程组问题的计算方法时,必须解决两个关键问题--即计算的精度和效率。这主要取决于
(I)离散化方法的收敛性质;
(Ii)线性求解器的计算复杂性;
(3)离散化方法和解算器的实施;
(4)利用并行性达到与模型大小成正比的程度的能力。
当数学模型的规模(即离散方程的数量)非常大时,最后一个因素变得特别重要。
本研究包括以下几个部分:
(A)
高阶偏微分方程离散化方法的发展与分析
以及计算复杂度低的求解器,例如FFT方法、多重网格格式、
域分解技术和混合方法,具有可伸缩的并行性。
离散方法和求解器首先被开发用于简单的模型问题,然后扩展到处理更困难的问题,
如层数问题、行为粗暴、病态、不连续等。
(B)
在具有多处理机的并行机上实现和测试了所提出的求解大型模型的方法。
这包括对求解偏微分方程组的方法和机器的性能评估
在并行时间和存储复杂性、通信复杂性(在分布式存储机器上)、
内存访问延迟(在GPU机器上)、加速、利用率、负载平衡和可扩展性。
(C)
对所提出的方法在金融衍生品估值和医疗应用等问题的解决中进行了应用和测试。
这些领域具有重要的战略意义,对经济和其他相关科学领域的发展有直接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christara, Christina其他文献
Christara, Christina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christara, Christina', 18)}}的其他基金
High-performance computational methods for Partial Differential Equations and applications
偏微分方程的高性能计算方法及应用
- 批准号:
RGPIN-2021-03502 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
High-performance computational methods for Partial Differential Equations and applications
偏微分方程的高性能计算方法及应用
- 批准号:
RGPIN-2021-03502 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for partial differential equations: algorithms and software on innovative computer architectures
偏微分方程的数值方法:创新计算机架构上的算法和软件
- 批准号:
89741-2010 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for partial differential equations: algorithms and software on innovative computer architectures
偏微分方程的数值方法:创新计算机架构上的算法和软件
- 批准号:
89741-2010 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for partial differential equations: algorithms and software on innovative computer architectures
偏微分方程的数值方法:创新计算机架构上的算法和软件
- 批准号:
89741-2010 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Efficient GPU implementation of numerical methods for scientific computing
科学计算数值方法的高效 GPU 实现
- 批准号:
423568-2012 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Innovation of Numerical Methods for High-Dimensional Partial Differential Equations
高维偏微分方程数值方法的创新
- 批准号:
2309378 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
- 批准号:
2208438 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2107934 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
- 批准号:
2110263 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual