Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
基本信息
- 批准号:RGPIN-2021-03539
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultrasound imaging is a common imaging modality in clinical practice. Using ultrasound transducers, the combination of acoustic wave emission in biological tissues, followed by the recording of backscattered echoes allows the reconstruction of anatomical images. The transducers are linear arrays of piezoelectric elements, and typically have up to 256 of them. Each element is connected to its own electrical channel that transmits its signal to the system. However, conventional ultrasound scanners cannot sample all these channels simultaneously, which means that only a part of the backscattered echoes can be recorded and displayed at once. The full 2D image is thus reconstructed line-per-line, with one transmission/reception for each line. This scanning approach intrinsically limits the framerate of the method (50 images/s). This is problematic when transient phenomenon are studied, such as blood flows. Recently, transducers with 32x32 matrix arrays of elements have enabled volumetric imaging. However, the same constraint on limited channel number considerably hinders the development of 4D ultrasound. My program investigates methods to overcome the limitations of conventional ultrasound imaging: its low framerate constraining blood flow detection, and its limited capacity to provide volumetric imaging. Using cutting-edge programmable ultrasound scanners, I use the so-called Ultrafast Ultrasound technology to achieve very-high framerates (up to 10000 images/s). These ultrafast scanners can fully sample 256 channels and reconstruct a full image with a single unfocused ultrasound transmission/reception. This high number of channels is still insufficient to drive a 32x32 matrix probe. Sophisticated prototypes combining four ultrafast scanners to drive one matrix probe exist but have two main drawbacks: their huge hardware cost and the loss of the system's portability, a key feature of ultrasound imaging. I propose to do "more with less": perform 4D ultrafast imaging with only portable 256-channels scanner, and apply it to volumetric blood-flow imaging. I will leverage on the recent developments of multiplexers, which makes it possible to drive 4 transducer's elements with a single channel. Using a sparse number of elements, it is possible to reconstruct volumes while keeping a high framerate and high image quality. I am developing simulation tools to evaluate the physical parameters for this ultrafast volumetric approach using sparse apertures. I am also developing two in vitro setups. One is a calibration water tank with a high-precision hydrophone to directly assess the acoustic pressure fields. The other is a Doppler phantom, mimicking a blood stream in a pulsatile artery, on which I will design spatiotemporal filters to detect blood backscattering signals. Lastly, I will also work on the in vivo proof-of-concept application on newborns. My approach will enable transfontanellar 4D imaging of neonate brain vascularization at the bedside.
超声成像是临床实践中常见的成像方式。使用超声换能器,结合生物组织中的声波发射,然后记录反向散射回波,可以重建解剖图像。换能器是压电元件的线性阵列,并且通常具有多达256个压电元件。每个元件都连接到其自己的电通道,该电通道将其信号传输到系统。然而,传统的超声扫描仪不能同时对所有这些通道进行采样,这意味着只能同时记录和显示一部分后向散射回波。因此,完整的2D图像是逐行重建的,其中每一行有一个发送/接收。这种扫描方法本质上限制了该方法的帧速率(50幅图像/秒)。当研究瞬态现象(例如血流)时,这是有问题的。最近,具有32 x32矩阵元件阵列的换能器已经实现了体积成像。然而,对有限通道数量的相同约束在很大程度上阻碍了4D超声的发展。我的计划研究方法,以克服传统的超声成像的局限性:它的低帧率约束血流检测,其有限的能力,提供体积成像。使用尖端的可编程超声扫描仪,我使用所谓的超快超声技术来实现非常高的帧率(高达10000图像/秒)。这些超快扫描仪可以完全采样256个通道,并通过单个未聚焦的超声发射/接收重建完整的图像。如此高数量的通道仍然不足以驱动32 x32矩阵探头。结合四个超快扫描仪来驱动一个矩阵探头的复杂原型存在,但有两个主要缺点:其巨大的硬件成本和系统便携性的损失,这是超声成像的一个关键特征。我提出了“少花钱多办事”的设想:仅用便携式256通道扫描仪进行4D超快成像,并将其应用于容积血流成像。我将利用多路复用器的最新发展,这使得有可能用一个通道驱动4个传感器的元件。使用稀疏数量的元素,可以重建体积,同时保持高帧率和高图像质量。我正在开发模拟工具,以评估使用稀疏孔径的超快体积方法的物理参数。我还在开发两种体外装置。一种是带有高精度水听器的校准水箱,用于直接评估声压场。另一个是多普勒体模,模拟脉动动脉中的血流,我将在其上设计时空滤波器来检测血液后向散射信号。最后,我还将致力于新生儿体内概念验证应用。我的方法将使新生儿脑血管的经<$颅4D成像在床边。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Villemain, Olivier其他文献
Double-Outlet Right Ventricle With Noncommitted Ventricular Septa! Defect and 2 Adequate Ventricles: Is Anatomical Repair Advantageous?
- DOI:
10.1053/j.semtcvs.2016.01.007 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:2.5
- 作者:
Villemain, Olivier;Bonnet, Damien;Belli, Emre - 通讯作者:
Belli, Emre
Non-invasive imaging techniques to assess myocardial perfusion
- DOI:
10.1080/17434440.2020.1834844 - 发表时间:
2020-10-23 - 期刊:
- 影响因子:3.1
- 作者:
Villemain, Olivier;Baranger, Jerome;Mertens, Luc - 通讯作者:
Mertens, Luc
Local arterial stiffness measured by ultrafast ultrasound imaging in childhood cancer survivors treated with anthracyclines.
- DOI:
10.3389/fcvm.2023.1150214 - 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Rasouli, Rahna;Baranger, Jerome;Slorach, Cameron;Hui, Wei;Venet, Maelys;Nguyen, Minh B.;Henry, Matthew;Gopaul, Josh;Nathan, Paul C.;Mertens, Luc;Villemain, Olivier - 通讯作者:
Villemain, Olivier
Impact of anatomic characteristics and initial biventricular surgical strategy on outcomes in various forms of double-outlet right ventricle
- DOI:
10.1016/j.jtcvs.2016.05.019 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:6
- 作者:
Villemain, Olivier;Belli, Emre;Bonnet, Damien - 通讯作者:
Bonnet, Damien
The fundamental mechanisms of the Korotkoff sounds generation.
- DOI:
10.1126/sciadv.adi4252 - 发表时间:
2023-10-06 - 期刊:
- 影响因子:13.6
- 作者:
Baranger, Jerome;Villemain, Olivier;Goudot, Guillaume;Dizeux, Alexandre;Le Blay, Heiva;Mirault, Tristan;Messas, Emmanuel;Pernot, Mathieu;Tanter, Mickael - 通讯作者:
Tanter, Mickael
Villemain, Olivier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Villemain, Olivier', 18)}}的其他基金
Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
- 批准号:
RGPIN-2021-03539 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
- 批准号:
DGECR-2021-00404 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
- 批准号:JCZRLH202500778
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D细胞球来源的凋亡小体修饰间充质干细胞的制备及“内外兼修”策略的构建用于脊髓损伤修复的作用机制研究
- 批准号:QN25H060008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
- 批准号:2025JJ60269
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
- 批准号:2025JJ80409
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
- 批准号:2025JJ70487
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多级结构仿生3D打印生物陶瓷调控
PI3K/Akt信号通路介导细胞应激反应促
进血管化骨再生的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
- 批准号:
RGPIN-2021-03539 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast 3D Super-Resolution Ultrasound Imaging with Bias Switchable Row-Column Arrays
具有偏置可切换行列阵列的超快 3D 超分辨率超声成像
- 批准号:
575483-2022 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10687214 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10314284 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10534125 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
- 批准号:
DGECR-2021-00404 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Ultrafast 3D structural dynamics for exploration of photoresponsive materials
用于探索光响应材料的超快 3D 结构动力学
- 批准号:
20H01832 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of computational tools 3D ultrafast Ultrasound Localization Microscopy
计算工具的开发 3D 超快超声定位显微镜
- 批准号:
539113-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards
Ultrafast laser nano-structuring in transparent glass: enabling 3D fibre-photonics packaging and assembly for high temperature sensing
透明玻璃中的超快激光纳米结构:实现用于高温传感的 3D 光纤光子学封装和组装
- 批准号:
543970-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program