Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
基本信息
- 批准号:RGPIN-2021-03539
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultrasound imaging is a common imaging modality in clinical practice. Using ultrasound transducers, the combination of acoustic wave emission in biological tissues, followed by the recording of backscattered echoes allows the reconstruction of anatomical images. The transducers are linear arrays of piezoelectric elements, and typically have up to 256 of them. Each element is connected to its own electrical channel that transmits its signal to the system. However, conventional ultrasound scanners cannot sample all these channels simultaneously, which means that only a part of the backscattered echoes can be recorded and displayed at once. The full 2D image is thus reconstructed line-per-line, with one transmission/reception for each line. This scanning approach intrinsically limits the framerate of the method (50 images/s). This is problematic when transient phenomenon are studied, such as blood flows. Recently, transducers with 32x32 matrix arrays of elements have enabled volumetric imaging. However, the same constraint on limited channel number considerably hinders the development of 4D ultrasound. My program investigates methods to overcome the limitations of conventional ultrasound imaging: its low framerate constraining blood flow detection, and its limited capacity to provide volumetric imaging. Using cutting-edge programmable ultrasound scanners, I use the so-called Ultrafast Ultrasound technology to achieve very-high framerates (up to 10000 images/s). These ultrafast scanners can fully sample 256 channels and reconstruct a full image with a single unfocused ultrasound transmission/reception. This high number of channels is still insufficient to drive a 32x32 matrix probe. Sophisticated prototypes combining four ultrafast scanners to drive one matrix probe exist but have two main drawbacks: their huge hardware cost and the loss of the system's portability, a key feature of ultrasound imaging. I propose to do "more with less": perform 4D ultrafast imaging with only portable 256-channels scanner, and apply it to volumetric blood-flow imaging. I will leverage on the recent developments of multiplexers, which makes it possible to drive 4 transducer's elements with a single channel. Using a sparse number of elements, it is possible to reconstruct volumes while keeping a high framerate and high image quality. I am developing simulation tools to evaluate the physical parameters for this ultrafast volumetric approach using sparse apertures. I am also developing two in vitro setups. One is a calibration water tank with a high-precision hydrophone to directly assess the acoustic pressure fields. The other is a Doppler phantom, mimicking a blood stream in a pulsatile artery, on which I will design spatiotemporal filters to detect blood backscattering signals. Lastly, I will also work on the in vivo proof-of-concept application on newborns. My approach will enable transfontanellar 4D imaging of neonate brain vascularization at the bedside.
超声成像是临床常用的一种成像方式。利用超声波换能器,结合生物组织中的声波发射,然后记录后向散射回波,可以重建解剖图像。换能器是压电元件的线性阵列,通常有多达256个。每个元件都连接到自己的电气通道,将其信号传输到系统。然而,传统的超声波扫描仪不能同时对所有这些通道进行采样,这意味着只能记录和显示一部分后向散射回波。因此,完整的二维图像是逐行重建的,每条线有一个传输/接收。这种扫描方法本质上限制了该方法的帧率(50张图像/秒)。这在研究瞬时现象(如血液流动)时是有问题的。最近,具有32x32矩阵阵列元件的换能器已经实现了体积成像。然而,同样的受限通道数的限制也极大地阻碍了4D超声的发展。我的计划研究克服传统超声成像局限性的方法:低帧率限制血流检测,以及提供体积成像的有限能力。使用尖端的可编程超声扫描仪,我使用所谓的超快超声技术来实现非常高的帧率(高达10000张图像/秒)。这些超快扫描仪可以完全采样256通道,并重建一个完整的图像与单一的无聚焦超声传输/接收。如此高的通道数量仍然不足以驱动32x32矩阵探头。目前已经有了将四个超快扫描仪驱动一个矩阵探针的复杂原型,但有两个主要缺点:硬件成本高昂,以及系统的便携性不足,而便携性是超声成像的一个关键特征。我建议做“少花钱多”:仅用便携式256通道扫描仪进行4D超快成像,并应用于体积血流成像。我将利用多路复用器的最新发展,这使得有可能用单个通道驱动4个换能器的元件。使用稀疏数量的元素,可以在保持高帧率和高图像质量的同时重建体积。我正在开发模拟工具来评估这种使用稀疏孔径的超快速体积方法的物理参数。我还在开发两个体外装置。一种是带有高精度水听器的校准水箱,可直接评估声压场。另一个是多普勒幻像,模拟搏动动脉中的血流,我将在其上设计时空滤波器来检测血液反向散射信号。最后,我还将在新生儿体内进行概念验证应用。我的方法将使经囟门四维成像新生儿脑血管在床边。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Villemain, Olivier其他文献
Double-Outlet Right Ventricle With Noncommitted Ventricular Septa! Defect and 2 Adequate Ventricles: Is Anatomical Repair Advantageous?
- DOI:
10.1053/j.semtcvs.2016.01.007 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:2.5
- 作者:
Villemain, Olivier;Bonnet, Damien;Belli, Emre - 通讯作者:
Belli, Emre
Non-invasive imaging techniques to assess myocardial perfusion
- DOI:
10.1080/17434440.2020.1834844 - 发表时间:
2020-10-23 - 期刊:
- 影响因子:3.1
- 作者:
Villemain, Olivier;Baranger, Jerome;Mertens, Luc - 通讯作者:
Mertens, Luc
Local arterial stiffness measured by ultrafast ultrasound imaging in childhood cancer survivors treated with anthracyclines.
- DOI:
10.3389/fcvm.2023.1150214 - 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Rasouli, Rahna;Baranger, Jerome;Slorach, Cameron;Hui, Wei;Venet, Maelys;Nguyen, Minh B.;Henry, Matthew;Gopaul, Josh;Nathan, Paul C.;Mertens, Luc;Villemain, Olivier - 通讯作者:
Villemain, Olivier
Impact of anatomic characteristics and initial biventricular surgical strategy on outcomes in various forms of double-outlet right ventricle
- DOI:
10.1016/j.jtcvs.2016.05.019 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:6
- 作者:
Villemain, Olivier;Belli, Emre;Bonnet, Damien - 通讯作者:
Bonnet, Damien
The fundamental mechanisms of the Korotkoff sounds generation.
- DOI:
10.1126/sciadv.adi4252 - 发表时间:
2023-10-06 - 期刊:
- 影响因子:13.6
- 作者:
Baranger, Jerome;Villemain, Olivier;Goudot, Guillaume;Dizeux, Alexandre;Le Blay, Heiva;Mirault, Tristan;Messas, Emmanuel;Pernot, Mathieu;Tanter, Mickael - 通讯作者:
Tanter, Mickael
Villemain, Olivier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Villemain, Olivier', 18)}}的其他基金
Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
- 批准号:
RGPIN-2021-03539 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
- 批准号:
DGECR-2021-00404 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
- 批准号:JCZRLH202500778
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D细胞球来源的凋亡小体修饰间充质干细胞的制备及“内外兼修”策略的构建用于脊髓损伤修复的作用机制研究
- 批准号:QN25H060008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
- 批准号:2025JJ60269
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
- 批准号:2025JJ80409
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
- 批准号:2025JJ70487
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多级结构仿生3D打印生物陶瓷调控
PI3K/Akt信号通路介导细胞应激反应促
进血管化骨再生的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Ultrafast 3D Super-Resolution Ultrasound Imaging with Bias Switchable Row-Column Arrays
具有偏置可切换行列阵列的超快 3D 超分辨率超声成像
- 批准号:
575483-2022 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10687214 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10314284 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
- 批准号:
RGPIN-2021-03539 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10534125 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
- 批准号:
DGECR-2021-00404 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Ultrafast 3D structural dynamics for exploration of photoresponsive materials
用于探索光响应材料的超快 3D 结构动力学
- 批准号:
20H01832 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of computational tools 3D ultrafast Ultrasound Localization Microscopy
计算工具的开发 3D 超快超声定位显微镜
- 批准号:
539113-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards
Ultrafast laser nano-structuring in transparent glass: enabling 3D fibre-photonics packaging and assembly for high temperature sensing
透明玻璃中的超快激光纳米结构:实现用于高温传感的 3D 光纤光子学封装和组装
- 批准号:
543970-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program