Mechanosensing through surface receptor-cytoskeleton coupling in innate immune cells
先天免疫细胞中通过表面受体-细胞骨架耦合进行机械传感
基本信息
- 批准号:RGPIN-2021-03727
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The role of the immune system is to protect our body and keep it in good functioning order. A key to this protection is the ability to distinguish normal heathy tissues from abnormal or aggressive entities. Cells of the innate immune system, such as macrophages and dendritic cells, live in every tissue of the body and act as sentinels of the immune system. They have an exquisite ability to recognize damaged cells and invasive entities, such as microbes, and to remove them through a process termed phagocytosis. It is crucial for proper immune function that macrophages (large eaters, from Greek) do not eat everything around them. So how do macrophages recognize what to eat? Macrophages must be ready for any kind of abnormal entities; thus, they recognize general features that are not found in normal tissues. For example, they can recognize molecules that do not exist in mammals, meaning that they must come from a different organism. Recently, we discovered that macrophages can also recognize the physical characteristics of the entities they try to eat. The physical characteristics of most microbes are very different from mammalian cells; they have various sizes and shapes, and they are very stiff. We have demonstrated that macrophages recognize the stiffness of their target through a receptor called Complement Receptor 3. However, the internal mechanism that enables macrophages to recognize stiffness, also called mechanosensing, is unknown. The overarching goal of this research program is to understand how immune cells recognize the stiffness of surrounding objects. In this proposal, we focus on the mechanisms that enable mechanosensing by the Complement Receptor 3 (CR3). To identify these mechanisms, we will use cutting edge microscopy techniques to visualize and quantify how macrophages generate and apply forces on their target, in response to its stiffness. Specifically, we will: 1) Reveal the role of CR3 attachment properties for mechanosensing. 2) Establish how the mechanical properties of the phagocytic target regulate the coupling of CR3 to the cytoskeleton. 3) Determine how CR3-mediated mechanosensing regulates cytoskeleton dynamics. This research program will reveal fundamental mechanisms that will help us to understand how the immune system works. Considering that mechanosensing plays an important role in many biological processes (e.g. including tissue development, cell differentiation, proliferation and migration), a better understanding of how mechanosensing works will have a broad impact in biological sciences. In addition to generating fundamental knowledge, this research program will provide outstanding opportunities to train students in advanced and unique skills (e.g. gene editing, quantitative microscopy, digital image processing) that will position them for competitive careers in life science technologies and innovation.
免疫系统的作用是保护我们的身体,使其保持良好的功能秩序。这种保护的关键是区分正常健康组织与异常或侵袭性实体的能力。先天免疫系统的细胞,如巨噬细胞和树突状细胞,存在于身体的每一个组织中,充当免疫系统的哨兵。它们具有识别受损细胞和侵入性实体(如微生物)的高超能力,并通过一种称为吞噬作用的过程将其清除。巨噬细胞(来自希腊语的“大食客”)不会吃掉周围的一切,这对正常的免疫功能至关重要。那么巨噬细胞是如何识别食物的呢?巨噬细胞必须为任何异常实体做好准备;因此,它们能识别正常组织中没有的一般特征。例如,它们可以识别哺乳动物中不存在的分子,这意味着它们一定来自不同的生物。最近,我们发现巨噬细胞还可以识别它们试图吃掉的实体的物理特征。大多数微生物的物理特性与哺乳动物细胞非常不同;它们有各种大小和形状,而且非常坚硬。我们已经证明巨噬细胞通过一种叫做补体受体3的受体来识别它们的目标的硬度。然而,巨噬细胞识别刚度的内部机制(也称为机械感应)尚不清楚。这项研究计划的首要目标是了解免疫细胞如何识别周围物体的硬度。在这一建议中,我们关注补体受体3 (CR3)实现机械传感的机制。为了确定这些机制,我们将使用尖端的显微镜技术来可视化和量化巨噬细胞如何根据其刚度对其目标产生和施加力。具体而言,我们将:1)揭示CR3附着特性在机械传感中的作用。2)确定吞噬靶点的力学性质如何调节CR3与细胞骨架的偶联。3)确定cr3介导的机械传感如何调节细胞骨架动力学。这个研究项目将揭示基本机制,帮助我们了解免疫系统是如何工作的。考虑到机械传感在许多生物过程中起着重要作用(例如,包括组织发育,细胞分化,增殖和迁移),更好地了解机械传感如何工作将对生物科学产生广泛的影响。除了产生基础知识外,该研究计划还将为培养学生的高级和独特技能(例如基因编辑,定量显微镜,数字图像处理)提供出色的机会,这些技能将使他们在生命科学技术和创新方面具有竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaumouillé, Valentin其他文献
Jaumouillé, Valentin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaumouillé, Valentin', 18)}}的其他基金
Mechanosensing through surface receptor-cytoskeleton coupling in innate immune cells
先天免疫细胞中通过表面受体-细胞骨架耦合进行机械传感
- 批准号:
RGPIN-2021-03727 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Mechanosensing through surface receptor-cytoskeleton coupling in innate immune cells
先天免疫细胞中通过表面受体-细胞骨架耦合进行机械传感
- 批准号:
DGECR-2021-00357 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
基于Flow-through流场的双离子嵌入型电容去离子及其动力学调控研究
- 批准号:52009057
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
- 批准号:
2305448 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Fellowship Award
Cloaking Anisotropic Capillary Interactions Through Tunable Nanoscale Surface Topography
通过可调纳米级表面形貌隐藏各向异性毛细管相互作用
- 批准号:
2232579 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Exploration of Crystal Surface Structures through Enumeration of Discrete Structures on an Infinite Plane and Similarity Design
通过无限平面上离散结构的枚举和相似性设计探索晶体表面结构
- 批准号:
23H03461 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Human Plasma Cell Maturation & Maintenance through CD138, TNFRSF, and Modulation of Ig Secretion
人类浆细胞成熟
- 批准号:
10660723 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
ELAVL1 role in glioblastoma heterogeneity through intercellular gene transfer mediated by cell fusion and tunneling membrane nanotube formation
ELAVL1通过细胞融合和隧道膜纳米管形成介导的细胞间基因转移在胶质母细胞瘤异质性中的作用
- 批准号:
10658226 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Preparation of crystalline-glass films through surface super activation and their applications to all-solid-state batteries
表面超活化制备结晶玻璃薄膜及其在全固态电池中的应用
- 批准号:
23H02044 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mobilizing TAP-independent CD8 T cells through non-canonical cross-presentation
通过非规范交叉呈递动员不依赖 TAP 的 CD8 T 细胞
- 批准号:
10659785 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Sacrificial templated grafts to encourage bone healing through mechanotransduction
牺牲模板移植物通过机械传导促进骨愈合
- 批准号:
10811305 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:














{{item.name}}会员




