Towards Accurate Detection, Segmentation, and Tracking of Objects and other Scene Attributes

实现对象和其他场景属性的准确检测、分割和跟踪

基本信息

  • 批准号:
    RGPIN-2021-04248
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

There is benefit in being able to identify, segment, and track individual objects in video, including rigid and articulated objects (e.g. humans, animals, cars, etc.), background elements (sky, clouds, trees, etc.), markers (i.e. objects specifically design to show as high-contrast to a camera), and feature points (fixed, high-contrast pixels, usually corners, that can be easily tracked over multiple frames and used as reference points). Apart from being able to accurately assign each pixel to a specific object, it is useful to determine where they are placed (in true 3D space if possible), and keep track of them through multiple video frames even as their appearance changes or they are partially/fully occluded by other objects as they move through the scene. This technology is used in a range of applications, including: video compression, depth estimation from single and stereo cameras (e.g. robotics), multi-camera stitching (to compensate for parallax), match-moving for visual effects, automatic camera calibration systems, marker-based and marker-less motion capture, and autonomous vehicle vision systems to name a few. The limitation of current systems is that it is difficult to extract the exact outline that distinguishes between two objects (especially as one pixel can represent a blending of both). The reasons for this include: lack of contrast, colour variation, texture, or lighting; frequent shifts in camera perspective and object orientation; motion blur (due to a fast moving scene and/or camera, or low light - meaning slower shutter speeds); light, shadow, and reflection variations (both under static and changing conditions), and various other smaller artifacts that are inherent within the camera (including sensor noise and simply the fact most sensors are Bayer-tile type and thus frames are constructed through demosaicing). In addition, most applications require real-time processing so that other systems can react to the information (e.g. autonomous vehicles, perimeter security). Therefore, identifying individual objects, determining their shape and outlines to sub-pixel accuracy and accurately tracking them in a sequence of frames is crucial for many mission-critical applications, especially under varying adverse conditions (e.g. snow or rain), without the need to rely on additional costly technology (such as LIDAR/RADAR) In this research program, we propose a range of new and complementary research directions based on a combination of traditional video processing techniques and deep learning methods that can be used to improve the accuracy of the current state of the art and deal with the more varied and complex conditions that can be expected in the application areas especially where the conditions cannot be controlled, but where they can be relied upon and trusted to produce precise real-time results.
能够识别、分割和跟踪视频中的单个对象是有好处的,包括刚性和铰接对象(例如人类、动物、汽车等)、背景元素(天空、云、树木等)、标记(即专门设计用于显示与相机高对比度的对象)和特征点(固定的、高对比度的像素,通常是角落,可以在多个帧上轻松跟踪并用作参考点)。除了能够准确地将每个像素分配给特定对象之外,确定它们的位置(如果可能的话,在真正的3D空间中)并通过多个视频帧跟踪它们也是有用的,即使它们的外观发生了变化,或者它们在场景中移动时被其他对象部分/完全遮挡。该技术用于一系列应用,包括:视频压缩、单摄像机和立体摄像机(例如机器人)的深度估计、多摄像机拼接(以补偿视差)、视觉效果的匹配移动、自动摄像机校准系统、基于标记和无标记的运动捕捉以及自动车辆视觉系统等等。当前系统的限制是很难提取出区分两个物体的确切轮廓(特别是当一个像素可以代表两者的混合时)。造成这种情况的原因包括:缺乏对比度、色彩变化、纹理或照明;相机视角和物体方向的频繁变化;动态模糊(由于快速移动的场景和/或相机,或低光-意味着较慢的快门速度);光线,阴影和反射变化(在静态和变化条件下),以及相机内部固有的各种其他较小的工件(包括传感器噪声和大多数传感器是拜耳瓦类型的事实,因此通过去马赛克构建帧)。此外,大多数应用程序需要实时处理,以便其他系统可以对信息做出反应(例如自动驾驶汽车,周边安全)。因此,识别单个物体,确定其形状和轮廓到亚像素精度,并在一系列帧中准确跟踪它们对于许多关键任务应用至关重要,特别是在不同的不利条件下(例如雪或雨),而不需要依赖额外的昂贵技术(如激光雷达/雷达)。基于传统视频处理技术和深度学习方法的结合,我们提出了一系列新的和互补的研究方向,可用于提高当前技术水平的准确性,并处理应用领域中可能出现的更多样化和更复杂的条件,特别是在条件无法控制的情况下,但在这些情况下,它们可以被依赖和信任以产生精确的实时结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joslin, Chris其他文献

Joslin, Chris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joslin, Chris', 18)}}的其他基金

Towards Accurate Detection, Segmentation, and Tracking of Objects and other Scene Attributes
实现对象和其他场景属性的准确检测、分割和跟踪
  • 批准号:
    RGPIN-2021-04248
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Next Generation Video Coding
下一代视频编码
  • 批准号:
    RGPIN-2015-04652
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Next Generation Video Coding
下一代视频编码
  • 批准号:
    RGPIN-2015-04652
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Next Generation Video Coding
下一代视频编码
  • 批准号:
    RGPIN-2015-04652
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Next Generation Video Coding
下一代视频编码
  • 批准号:
    RGPIN-2015-04652
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Next Generation Video Coding
下一代视频编码
  • 批准号:
    RGPIN-2015-04652
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptation of dynamically generated content
动态生成内容的适应
  • 批准号:
    327617-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptation of dynamically generated content
动态生成内容的适应
  • 批准号:
    327617-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptation of dynamically generated content
动态生成内容的适应
  • 批准号:
    327617-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptation of dynamically generated content
动态生成内容的适应
  • 批准号:
    327617-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2421137
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2339868
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Toward the accurate large-scale structural variation detection by short read sequencers
通过短读长测序仪进行准确的大规模结构变异检测
  • 批准号:
    23KF0205
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Molecularly Imprinted Heavy Metal-free Quantum Dots as Fluorescent Probes for Rapid and Accurate Detection of Viruses
分子印迹不含重金属的量子点作为荧光探针用于快速准确地检测病毒
  • 批准号:
    EP/X029956/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Development of an all-in-one soft wearable device for accurate lung function detection and asthma diagnosis
开发一款用于精确肺功能检测和哮喘诊断的一体式软可穿戴设备
  • 批准号:
    10726175
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Circulating cell-free DNA methylation as an accurate tool for detection and clinical follow-up of glioma
循环游离 DNA 甲基化作为神经胶质瘤检测和临床随访的准确工具
  • 批准号:
    10660090
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Constructing Highly Accurate Supervised Outlier Detection Method by Quasiconformal Extension and Generative Adversarial Networks
通过拟共形扩展和生成对抗网络构建高精度监督异常值检测方法
  • 批准号:
    22K12050
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Human-AI Cooperative Management System for Highly Accurate Estrus and Falling Down Flat Detection in Beef Cattle
肉牛高精度发情、跌倒检测人机协同管理系统开发
  • 批准号:
    22K05915
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Next Generation Machine Learning for the Accurate Detection of DNA Variations from High-Throughput Sequencing Data
用于从高通量测序数据中准确检测 DNA 变异的下一代机器学习
  • 批准号:
    RGPIN-2019-04896
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Accurate Detection, Segmentation, and Tracking of Objects and other Scene Attributes
实现对象和其他场景属性的准确检测、分割和跟踪
  • 批准号:
    RGPIN-2021-04248
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了