Intelligent Diagnostics and Prognostics of Electric Vehicle Powertrains
电动汽车动力系统的智能诊断和预测
基本信息
- 批准号:RGPIN-2021-04272
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electric vehicle (EV) technology will soon revolutionize the transportation industry. EV performance depends mainly on the functionality of its powertrain, especially the battery pack and the drive induction motor (IM). The imperfections in the motor will generate EV malfunction, and degrade its power efficiency and drive safety. On the other hand, Lithium ion technology is still in its early stages. No matter how good a battery is, it will degrade over time with every charge/discharge cycle. Due to volatility, flammability and entropy changes, a battery could ignite by overheating. Battery failure will not only result in inconvenience and repair costs, but also risk catastrophic consequences especially in passenger vehicles. Accordingly, the long term objective of this research program is to develop new technology and tools to improve the reliability of intelligent diagnosis and prognosis (IDP) in EV powertrains. The IDP system can be used to monitor the health condition of the drive motors in real-time. It can also effectively estimate battery state of life, improve battery performance, efficiency and lifespan, and optimize vehicle operation. Over the next five years, the specific research themes include: (1) new hybrid techniques will be developed to improve the reliability of bearing fault detection in IMs; (2) An intelligent classifier will be developed for real-time health condition monitoring of drive motors in EVs; (3) A new diagnostic system will be proposed to examine battery state of health; and (4) a hybrid intelligent predictor will be developed to predict the remaining useful life of batteries. Appropriate machine learning algorithms will be proposed to improve the decision-making convergence and robustness of the related intelligent systems. This multidisciplinary research program will provide unique and leading-edge opportunities to train HQP in the related academic fields. Since IMs and batteries are also commonly used in other industrial and domestic applications, the developed IDP technology and tools can not only significantly benefit the EV and hybrid EV industrial sectors in Canada, but can also help with a wide range of industrial and domestic applications using IMs and batteries, boosting the economy, protecting the environment, and enhancing the competitiveness of Canadian companies in the global market.
电动汽车(EV)技术将很快彻底改变交通运输行业。电动汽车的性能主要取决于其动力系统的功能,特别是电池组和驱动感应电机(IM)。电动机的缺陷会导致电动汽车故障,降低电动汽车的功率效率和行驶安全性。另一方面,锂离子技术仍处于早期阶段。无论电池有多好,它都会随着每次充电/放电循环而退化。由于挥发性、易燃性和熵变,电池可能因过热而着火。电池故障不仅会导致不便和维修成本,而且还可能带来灾难性后果,特别是在乘用车中。因此,本研究计划的长期目标是开发新技术和工具,以提高电动汽车动力系统智能诊断和预测(IDP)的可靠性。IDP系统可用于实时监控驱动电机的健康状况。它还可以有效地估计电池的寿命状态,提高电池的性能,效率和寿命,并优化车辆运行。在未来五年,具体的研究主题包括:(1)将开发新的混合技术,以提高IM轴承故障检测的可靠性;(2)将开发智能分类器,用于电动汽车驱动电机的实时健康状态监测;(3)将提出一种新的诊断系统,以检查电池的健康状态;(4)将开发一种新的诊断系统,以检查电池的健康状态。(4)开发了一种混合智能预测器,用于预测电池的剩余使用寿命。适当的机器学习算法将被提出来改善相关智能系统的决策收敛性和鲁棒性。这个多学科的研究计划将提供独特的和领先的机会,以培训HQP在相关的学术领域。由于IM和电池也常用于其他工业和家庭应用,因此开发的IDP技术和工具不仅可以使加拿大的电动汽车和混合动力电动汽车工业部门受益匪浅,而且还可以帮助使用IM和电池的广泛工业和家庭应用,促进经济,保护环境,提高加拿大公司在全球市场上的竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Wilson其他文献
A multi-step predictor with a variable input pattern for system state forecasting
- DOI:
10.1016/j.ymssp.2008.09.006 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:8.4
- 作者:
Liu, Jie;Wang, Wilson;Golnaraghi, Farid - 通讯作者:
Golnaraghi, Farid
An Adaptive Particle Filter Technique for System State Estimation and Prognosis
- DOI:
10.1109/tim.2020.2973850 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:5.6
- 作者:
Ahwiadi, Mohamed;Wang, Wilson - 通讯作者:
Wang, Wilson
Pandemics and Their Impact on Medical Training: Lessons From Singapore
- DOI:
10.1097/acm.0000000000003441 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:7.4
- 作者:
Liang, Zhen Chang;Ooi, Shirley Beng Suat;Wang, Wilson - 通讯作者:
Wang, Wilson
Total knee arthroplasty in a patient with a fused ipsilateral hip
- DOI:
10.1186/s13018-015-0271-z - 发表时间:
2015-08-19 - 期刊:
- 影响因子:2.6
- 作者:
Koo, Kevin;Pang, Khang Chiang;Wang, Wilson - 通讯作者:
Wang, Wilson
An enhanced Hilbert-Huang transform technique for bearing condition monitoring
- DOI:
10.1088/0957-0233/24/8/085004 - 发表时间:
2013-08-01 - 期刊:
- 影响因子:2.4
- 作者:
Osman, Shazali;Wang, Wilson - 通讯作者:
Wang, Wilson
Wang, Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Wilson', 18)}}的其他基金
Intelligent Diagnostics and Prognostics of Electric Vehicle Powertrains
电动汽车动力系统的智能诊断和预测
- 批准号:
RGPIN-2021-04272 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Online Condition Monitoring of Electric Machines
电机在线状态监测
- 批准号:
RGPIN-2016-06311 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Online Condition Monitoring of Electric Machines
电机在线状态监测
- 批准号:
RGPIN-2016-06311 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Remote health condition monitoring of water pump systems
水泵系统的远程健康状况监测
- 批准号:
537683-2018 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Online Condition Monitoring of Electric Machines
电机在线状态监测
- 批准号:
RGPIN-2016-06311 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Online Condition Monitoring of Electric Machines
电机在线状态监测
- 批准号:
RGPIN-2016-06311 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Online Condition Monitoring of Electric Machines
电机在线状态监测
- 批准号:
RGPIN-2016-06311 - 财政年份:2016
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Hybrid monitoring, diagnostics and prognostics on machines and structures
机器和结构的混合监控、诊断和预测
- 批准号:
RGPIN-2016-05859 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Advanced Machine Learning Techniques for Fault Diagnostics and Prognostics: From Modern Complex Manufacturing Systems to Healthcare
用于故障诊断和预测的先进机器学习技术:从现代复杂制造系统到医疗保健
- 批准号:
RGPIN-2019-06966 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Learning from the Champlain Bridge - Toward improved condition assessment diagnostics and prognostics supporting more effective bridge maintenance and rehabilitation
向尚普兰大桥学习 - 改进状况评估诊断和预测,支持更有效的桥梁维护和修复
- 批准号:
566567-2021 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
Intelligent Diagnostics and Prognostics of Electric Vehicle Powertrains
电动汽车动力系统的智能诊断和预测
- 批准号:
RGPIN-2021-04272 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Learning from the Champlain Bridge - Toward improved condition assessment diagnostics and prognostics supporting more effective bridge maintenance and rehabilitation
向尚普兰大桥学习 - 改进状况评估诊断和预测,支持更有效的桥梁维护和修复
- 批准号:
566567-2021 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
Hybrid monitoring, diagnostics and prognostics on machines and structures
机器和结构的混合监控、诊断和预测
- 批准号:
RGPIN-2016-05859 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Advanced Machine Learning Techniques for Fault Diagnostics and Prognostics: From Modern Complex Manufacturing Systems to Healthcare
用于故障诊断和预测的先进机器学习技术:从现代复杂制造系统到医疗保健
- 批准号:
RGPIN-2019-06966 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Hybrid monitoring, diagnostics and prognostics on machines and structures
机器和结构的混合监控、诊断和预测
- 批准号:
RGPIN-2016-05859 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Reliability Assurance Methodology Incorporating Advanced Diagnostics and Prognostics
结合先进诊断和预测的可靠性保证方法
- 批准号:
RGPIN-2015-04897 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Advanced Machine Learning Techniques for Fault Diagnostics and Prognostics: From Modern Complex Manufacturing Systems to Healthcare
用于故障诊断和预测的先进机器学习技术:从现代复杂制造系统到医疗保健
- 批准号:
RGPIN-2019-06966 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual