Transitioning to hydrogen based power generation through a novel, fuel-flex, gas turbine injector concept

通过新颖的燃料弹性燃气轮机喷射器概念过渡到氢基发电

基本信息

  • 批准号:
    570548-2021
  • 负责人:
  • 金额:
    $ 27.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

There is great urgency in mitigating the climate forcing emissions from the power generation sector in the quest to prevent the impending climate catastrophe. Transitioning to green hydrogen in place of natural gas as the fuel of choice for gas turbine-based power plants is fast emerging as a feasible solution, especially in Canada where abundant hydroelectricity enables minimal carbon footprint in the entire energy cycle. To enable this transition, there is great interest at Siemens Energy Canada and the National Research Council Canada to develop fuel flexible nozzles that can allow seamless operation anywhere on and between 100% hydrogen to 100% natural gas as the gas turbine fuel while ensuring strict operability envelope in terms of emissions, and safe and stable operation. Given the vastly different fuel physical and chemical properties, this is a stiff challenge. A combination of fuel injection techniques: one primary stream injected from the swirler and another novel micromixing based injection just upstream of the primary combustion zone has emerged as a possible concept among scientists from Siemens Energy Canada and NRC. To bring this idea to fruition, a team of academics from McGill University, Polytechnique Montréal, and University of Toronto will perform detailed laser-based measurements and high-fidelity simulations on this concept to identify and understand the operability envelopes achievable. This will be enabled by a combination of work-packages led by the academic institutes and by NRC in close collaboration with Siemens Energy Canada. These include but are not limited to determining the near field mixing characteristics of the micromixing jets, combustion efficiency and emissions, static and dynamic stability envelopes, mechanisms of flame stabilization, and flame-wall interaction. The outcomes will allow systematic development of the fuel-flex, micromix-premix nozzle with well defined operation envelope. The nozzle could emerge as a centerpiece technology in transitioning the highly efficient natural gas powered, Canadian power plants to hydrogen, thereby significantly reducing their overall carbon footprint and retaining their techno-economic leadership in the power-generation sector.
为了防止即将到来的气候灾难,迫切需要减轻发电部门的气候排放。过渡到绿色氢代替天然气作为燃气轮机发电厂的首选燃料正在迅速成为一种可行的解决方案,特别是在加拿大,那里丰富的水电使整个能源循环中的碳足迹最小。为了实现这一转变,西门子能源加拿大公司和加拿大国家研究理事会对开发燃料柔性喷嘴非常感兴趣,该燃料柔性喷嘴可以允许作为燃气涡轮机燃料的100%氢气到100%天然气之间的任何地方的无缝操作,同时确保排放方面的严格可操作性范围以及安全稳定的操作。由于燃料的物理和化学性质差异很大,这是一个严峻的挑战。燃料喷射技术的组合:一个从旋流器喷射的主流和另一个基于微混合的喷射的新的主燃烧区上游已经出现作为一个可能的概念之间的科学家从西门子能源加拿大和NRC。为了实现这一想法,来自麦吉尔大学、蒙特利尔理工大学和多伦多大学的一个学术团队将对这一概念进行详细的激光测量和高保真模拟,以确定和理解可实现的可操作性范围。这将通过学术机构和NRC与西门子能源加拿大公司密切合作领导的工作包的组合来实现。这些包括但不限于确定的近场混合特性的微混合射流,燃烧效率和排放,静态和动态稳定性信封,火焰稳定的机制,和火焰壁相互作用。这些结果将允许系统地开发具有良好定义的操作包线的燃料柔性、微混合-预混合喷嘴。该喷嘴可能成为将高效的天然气动力加拿大发电厂转变为氢气的核心技术,从而显着减少其整体碳足迹,并保持其在发电行业的技术经济领导地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chaudhuri, SwetaprovoSC其他文献

Chaudhuri, SwetaprovoSC的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

气体信号分子硫化氢对颈动脉窦压力反射感受器的调节作用及机制
  • 批准号:
    81100181
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
气体信号分子硫化氢对腰椎间盘髓核细胞凋亡影响的实验研究
  • 批准号:
    81071504
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
硫化氢通过核转录因子-kB信号途径调节高血压大鼠血管平滑肌细胞增殖的研究
  • 批准号:
    81070212
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
水合物储存氢气的应用基础研究
  • 批准号:
    50806050
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
内源性硫化氢调控高血压血管基质重塑的研究
  • 批准号:
    30801251
  • 批准年份:
    2008
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EXSOLUTION-BASED NANOPARTICLES FOR LOWEST COST GREEN HYDROGEN VIA ELECTROLYSIS
基于萃取的纳米颗粒通过电解生产成本最低的绿氢
  • 批准号:
    10102891
  • 财政年份:
    2024
  • 资助金额:
    $ 27.48万
  • 项目类别:
    EU-Funded
CAREER: Multi-isotopologue absorption spectroscopy for hydrogen-carrier and nitrogen-based low-carbon energy
职业:氢载体和氮基低碳能源的多同位素吸收光谱
  • 批准号:
    2339502
  • 财政年份:
    2024
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Continuing Grant
Super selective hydrogen permeation through mixed proton and electron conducting asymmetric graphene based membrane
通过混合质子和电子传导不对称石墨烯基膜的超选择性氢渗透
  • 批准号:
    24K17588
  • 财政年份:
    2024
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Heat Transfer for Hydrogen-based Propulsion
氢基推进的传热
  • 批准号:
    2902853
  • 财政年份:
    2024
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Studentship
A High Precision Laser-based Mobile SEnsor for Detection of Trace Amounts of Hydrogen
用于检测痕量氢气的高精度激光移动传感器
  • 批准号:
    EP/Y034457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Research Grant
Collaborative Research: Identifying Hydrogen-Density Based Laws for Plasticity in Polycrystalline Materials
合作研究:确定基于氢密度的多晶材料塑性定律
  • 批准号:
    2303108
  • 财政年份:
    2023
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Standard Grant
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
  • 批准号:
    10644211
  • 财政年份:
    2023
  • 资助金额:
    $ 27.48万
  • 项目类别:
Novel Science for Innovative Hydrogen Production Based on Analogy between Boiling and Water Electrolysis
基于沸腾和水电解类比的创新制氢新科学
  • 批准号:
    23H00282
  • 财政年份:
    2023
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Functional Design of Nanofibers Based on the Synergetic Effects of Hydrogen/Deuterium Exchange and Polymer Chain Confinement
基于氢/氘交换和聚合物链限制协同效应的纳米纤维功能设计
  • 批准号:
    23H02022
  • 财政年份:
    2023
  • 资助金额:
    $ 27.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Sulfur Based Stem Cell Therapeutics in Necrotizing Enterocolitis
硫基干细胞治疗坏死性小肠结肠炎
  • 批准号:
    10659645
  • 财政年份:
    2023
  • 资助金额:
    $ 27.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了