Principles of Tissue-wide and Cell-Autonomous Gene Function in Neocortex Formation

新皮质形成中的组织范围和细胞自主基因功能原理

基本信息

  • 批准号:
    RGPIN-2022-05273
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Understanding the fundamental processes that make the brain unique at a cellular and molecular level is the core focus of my lab. Even though neural stem cells (NSCs) produce an enormous diversity of neurons and glia, our understanding of what defines a cell type in the brain is lacking. To address this, the long-term objective of my research program is to investigate the molecular regulators of NSC lineage progression and their role in determining cell types and states in the developing central nervous system. I study the cerebral cortex, an evolutionarily expanded region in humans associated with higher-level processing. Most, if not all, cortical excitatory neurons and glia are derived from a shared pool of NSCs known as the radial glial progenitors (RGPs). The genetic and epigenetic factors regulating RGP temporal progression along their lineage are primarily unknown. The Notch pathway is a master regulator of RGP proliferation and is indispensable for maintaining the balance between neurogenesis and gliogenesis during development. By incorporating state-of-the-art technologies, my lab will dissect the contribution of Notch signalling in RGP lineage progression at single-cell resolution. This work will significantly expand our knowledge of how large gene modules contribute to complex tissues in a cell-type-specific way. To address this, highly qualified personnel (HQP) will apply Mosaic Analysis with Double Markers (MADM) technology, a single-cell genetic approach for in vivo lineage tracing. This proposal is the first application of these genetic technologies in Canada, with my lab uniquely having both access and expert firsthand experience needed to implement the proposed research program efficiently. MADM technology will be applied in both short-term objectives. Short-term objective 1 will measure the requirements of Notch1 and Rbpj in single RGPs during embryonic development. Notch1 is a cell-surface receptor expressed by RGPs in the cortex and upon activation it is cleaved releasing an intracellular domain. Rbpj is the downstream mediator of Notch signalling, regulating its transcriptional response. These experiments will provide a definitive readout of Notch1 and Rbpj regulation of RGP output in defined cortical regions. Short-term objective 2 will test the hypothesis that Notch activity levels determine the fate of progenitors and their progeny. MADM will dissect the functional importance of cis- and trans-interactions of Notch1 with the ligand, Jagged1, in producing the correct number of neurons and glia. This proposal will also address the broader concept of how cell-intrinsic and tissue-wide gene function contributes to normal brain development and tissue homeostasis. This research program represents a newly emerging area of single-cell biology and genetic research. It will significantly advance our understanding of the molecular biology underlying RGP lineage progression at single-cell resolution while training at least 9 HQP.
了解使大脑在细胞和分子水平上独一无二的基本过程是我实验室的核心重点。尽管神经干细胞(NSCs)产生了多种多样的神经元和神经胶质细胞,但我们对大脑中细胞类型的定义仍缺乏了解。为了解决这个问题,我的研究计划的长期目标是研究NSC谱系进展的分子调节因子及其在发育中的中枢神经系统中决定细胞类型和状态的作用。我研究大脑皮层,这是人类在进化过程中扩展的区域,与高级处理有关。大多数(如果不是全部的话)皮质兴奋性神经元和神经胶质来源于一个被称为放射状神经胶质祖细胞(RGPs)的共享的神经干细胞池。调控RGP时间进展的遗传和表观遗传因素主要是未知的。Notch通路是RGP增殖的主要调控因子,在发育过程中维持神经发生和胶质瘤发生之间的平衡是必不可少的。通过结合最先进的技术,我的实验室将在单细胞分辨率上剖析Notch信号在RGP谱系进展中的贡献。这项工作将大大扩展我们对大基因模块如何以细胞类型特异性方式促进复杂组织的认识。为了解决这个问题,高素质的人员(HQP)将应用双标记镶嵌分析(MADM)技术,这是一种单细胞遗传方法,用于体内谱系追踪。这项提案是这些基因技术在加拿大的首次应用,我的实验室拥有独特的渠道和专家第一手经验,可以有效地实施拟议的研究计划。MADM技术将用于两个短期目标。短期目标1将测量胚胎发育过程中单个rgp对Notch1和Rbpj的需求。Notch1是一种由rgp在皮层表达的细胞表面受体,激活后被裂解释放胞内结构域。Rbpj是Notch信号的下游介质,调节其转录反应。这些实验将提供Notch1和Rbpj在确定的皮质区域对RGP输出的调节的明确读数。短期目标2将检验Notch活性水平决定祖细胞及其后代命运的假设。MADM将剖析Notch1与配体Jagged1的顺式和反式相互作用在产生正确数量的神经元和胶质细胞中的功能重要性。这一建议也将解决细胞内在和组织范围内的基因功能如何促进正常大脑发育和组织稳态的更广泛的概念。这个研究项目代表了单细胞生物学和基因研究的一个新兴领域。在训练至少9 HQP的同时,它将显著促进我们对单细胞分辨率下RGP谱系进展的分子生物学基础的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beattie, Robert其他文献

Mosaic Analysis with Double Markers Reveals Distinct Sequential Functions of Lgl1 in Neural Stem Cells
  • DOI:
    10.1016/j.neuron.2017.04.012
  • 发表时间:
    2017-05-03
  • 期刊:
  • 影响因子:
    16.2
  • 作者:
    Beattie, Robert;Postiglione, Maria Pia;Hippenmeyer, Simon
  • 通讯作者:
    Hippenmeyer, Simon
Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development
  • DOI:
    10.1038/s41467-019-14077-2
  • 发表时间:
    2020-01-10
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Laukoter, Susanne;Beattie, Robert;Hippenmeyer, Simon
  • 通讯作者:
    Hippenmeyer, Simon
miR379-410 cluster miRNAs regulate neurogenesis and neuronal migration by fine-tuning N-cadherin
  • DOI:
    10.1002/embj.201386591
  • 发表时间:
    2014-04-16
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Rago, Luciano;Beattie, Robert;Winter, Jennifer
  • 通讯作者:
    Winter, Jennifer
Modern hydrophilid clades present and widespread in the Late Jurassic and Early Cretaceous (Coleoptera: Hydrophiloidea: Hydrophilidae)
现代亲水分支存在并广泛存在于晚侏罗世和早白垩世(鞘翅目:亲水总科:亲水科)
SCOPES: Sparking Curiosity Through Open-Source Platforms in Education and Science
  • DOI:
    10.3389/feduc.2020.00048
  • 发表时间:
    2020-05-08
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Beattie, Robert;Hippenmeyer, Simon;Pauler, Florian M.
  • 通讯作者:
    Pauler, Florian M.

Beattie, Robert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Beattie, Robert', 18)}}的其他基金

Principles of Tissue-wide and Cell-Autonomous Gene Function in Neocortex Formation
新皮质形成中的组织范围和细胞自主基因功能原理
  • 批准号:
    DGECR-2022-00238
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

A democratized platform for mapping the spatial epigenome in tissue
用于绘制组织空间表观基因组图谱的民主化平台
  • 批准号:
    10822023
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
  • 批准号:
    10813753
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Regulation of tissue-resident helper type 2 T cells by fatty acid transport protein 4 (FATP4)
脂肪酸转运蛋白 4 (FATP4) 对组织驻留辅助型 2 T 细胞的调节
  • 批准号:
    10677098
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Enabling clinical tissue microstructure imaging as a diagnostic tool in wide-bore 3T MRI
将临床组织微观结构成像作为大口径 3T MRI 的诊断工具
  • 批准号:
    10640750
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Novel mechanisms regulating adipose tissue function in health and disease
调节健康和疾病中脂肪组织功能的新机制
  • 批准号:
    10736765
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Statistical methods for population-level cell-type-specific analyses of tissue omics data for Alzheimer's disease
阿尔茨海默病组织组学数据的群体水平细胞类型特异性分析的统计方法
  • 批准号:
    10589254
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Tissue-Specific Regulation and Effects of CYP24A1
CYP24A1 的组织特异性调控和作用
  • 批准号:
    10580931
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Principles of Tissue-wide and Cell-Autonomous Gene Function in Neocortex Formation
新皮质形成中的组织范围和细胞自主基因功能原理
  • 批准号:
    DGECR-2022-00238
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Launch Supplement
Engineered Heart Tissue and Atrial Phenotyping Scientific Core 1
工程心脏组织和心房表型科学核心 1
  • 批准号:
    10410645
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
DISSECTING THE ROLES OF FAT1 AND NEAT1 IN SOFT TISSUE SARCOMA DEVELOPMENT AND METASTASIS USING NOVEL IN VIVO SARCOMA MODELS
使用新颖的体内肉瘤模型剖析 FAT1 和 NEAT1 在软组织肉瘤发展和转移中的作用
  • 批准号:
    10697997
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了