Genomic and proteomic approaches to understanding mitochondrial diversity in eukaryotic microbes

了解真核微生物线粒体多样性的基因组和蛋白质组方法

基本信息

  • 批准号:
    RGPIN-2019-04336
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Mitochondria are eukaryotic subcellular structures that originated from the integration of a bacterial endosymbiont into an archaeal host. Though they retain a relic genome, almost all proteins that function within mitochondria - including proteins involved in key processes like energy conversion and programmed cell death - are encoded in the nuclear genome. It is therefore necessary to systematically identify nucleus-encoded mitochondrial proteins in order to fully understand mitochondrial function and evolution. Mitochondrial proteome studies have been carried out in animals, plants, and fungi; however, such a narrow phylogenetic focus on multicellular organisms biases evolutionary interpretations. It is therefore imperative to characterize mitochondria from a broad sampling of eukaryotic microbes (protists), because they make up the bulk of genetic diversity within Eukarya. A small number of protist mitochondria have been intensively studied, revealing considerable metabolic variation between different lineages, and many novel, functionally unannotated proteins. As a result, much remains to be learned about: 1) the diversity of mitochondrial metabolism in protists, especially uncultured groups whose genomes are completely unexplored, and 2) the functions of protist mitochondrial proteins whose functions are not understood due to the scarcity of genetic tools necessary to dissect their function. Our research aim is to address these two problems. 1) Mitochondrial diversity: To expand our understanding of mitochondrial functional versatility, we will use single-cell genomics and transcriptomics to predict mitochondrial proteins in Foraminifera, an abundant group of marine heterotrophs that are notoriously difficult to culture. This work will examine how mitochondria from cells living in oxygenated and anoxic sediments differ, providing important clues to how mitochondria evolve to function in low oxygen. This is an important topic given recent global increases in oceanic oxygen minimum zones. 2) Mitochondrial function: My group will also employ the model amoebozoan, Dictyostelium discoideum, as a tool to investigate mitochondrial evolution and function in protists. By taking advantage of Dictyostelium's ease of cultivation, genetic toolkit, and complex life cycle - including unicellular and multicellular stages - we will use proteomics, along with comparative and functional genomics, to reconstruct mitochondrial ancestral states, elucidate the role that mitochondria play in the transition from unicellularity to multicellularity, and interrogate the functions of novel mitochondrial proteins. This work will be important to evolutionary biologists interested in tracing how genome evolution affects the composition of mitochondria, and to functional biologists interested in establishing putative functions for proteins that are either not present in model systems, or those whose function is obscured by the complex biology of multicellular systems.
Mitochondria are eukaryotic subcellular structures that originated from the integration of a bacterial endosymbiont into an archaeal host. Though they retain a relic genome, almost all proteins that function within mitochondria - including proteins involved in key processes like energy conversion and programmed cell death - are encoded in the nuclear genome. It is therefore necessary to systematically identify nucleus-encoded mitochondrial proteins in order to fully understand mitochondrial function and evolution. Mitochondrial proteome studies have been carried out in animals, plants, and fungi; however, such a narrow phylogenetic focus on multicellular organisms biases evolutionary interpretations. It is therefore imperative to characterize mitochondria from a broad sampling of eukaryotic microbes (protists), because they make up the bulk of genetic diversity within Eukarya. A small number of protist mitochondria have been intensively studied, revealing considerable metabolic variation between different lineages, and many novel, functionally unannotated proteins. As a result, much remains to be learned about: 1) the diversity of mitochondrial metabolism in protists, especially uncultured groups whose genomes are completely unexplored, and 2) the functions of protist mitochondrial proteins whose functions are not understood due to the scarcity of genetic tools necessary to dissect their function. Our research aim is to address these two problems. 1) Mitochondrial diversity: To expand our understanding of mitochondrial functional versatility, we will use single-cell genomics and transcriptomics to predict mitochondrial proteins in Foraminifera, an abundant group of marine heterotrophs that are notoriously difficult to culture. This work will examine how mitochondria from cells living in oxygenated and anoxic sediments differ, providing important clues to how mitochondria evolve to function in low oxygen. This is an important topic given recent global increases in oceanic oxygen minimum zones. 2) Mitochondrial function: My group will also employ the model amoebozoan, Dictyostelium discoideum, as a tool to investigate mitochondrial evolution and function in protists. By taking advantage of Dictyostelium's ease of cultivation, genetic toolkit, and complex life cycle - including unicellular and multicellular stages - we will use proteomics, along with comparative and functional genomics, to reconstruct mitochondrial ancestral states, elucidate the role that mitochondria play in the transition from unicellularity to multicellularity, and interrogate the functions of novel mitochondrial proteins. This work will be important to evolutionary biologists interested in tracing how genome evolution affects the composition of mitochondria, and to functional biologists interested in establishing putative functions for proteins that are either not present in model systems, or those whose function is obscured by the complex biology of multicellular systems.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gawryluk, Ryan其他文献

Gawryluk, Ryan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gawryluk, Ryan', 18)}}的其他基金

Genomic and proteomic approaches to understanding mitochondrial diversity in eukaryotic microbes
了解真核微生物线粒体多样性的基因组和蛋白质组方法
  • 批准号:
    RGPIN-2019-04336
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Genomic and proteomic approaches to understanding mitochondrial diversity in eukaryotic microbes
了解真核微生物线粒体多样性的基因组和蛋白质组方法
  • 批准号:
    RGPIN-2019-04336
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Genomic and proteomic approaches to understanding mitochondrial diversity in eukaryotic microbes
了解真核微生物线粒体多样性的基因组和蛋白质组方法
  • 批准号:
    RGPIN-2019-04336
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Genomic and proteomic approaches to understanding mitochondrial diversity in eukaryotic microbes
了解真核微生物线粒体多样性的基因组和蛋白质组方法
  • 批准号:
    DGECR-2019-00135
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Launch Supplement
The evoltuion of mitochondrial protein complexes: characterizing the electron transport chain and mitochondrial ribosomes of the ciliated protozoon, Tertahymena thermophila
线粒体蛋白复合物的进化:表征纤毛原生动物嗜热四膜虫的电子传递链和线粒体核糖体
  • 批准号:
    362662-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The evoltuion of mitochondrial protein complexes: characterizing the electron transport chain and mitochondrial ribosomes of the ciliated protozoon, Tertahymena thermophila
线粒体蛋白复合物的进化:表征纤毛原生动物嗜热四膜虫的电子传递链和线粒体核糖体
  • 批准号:
    362662-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Masters Thesis Proposal: Identification and characterization of genes linked to Bardet-Biedl syndrome and cilia function
硕士论文提案:与 Bardet-Biedl 综合征和纤毛功能相关的基因的鉴定和表征
  • 批准号:
    316798-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Postgraduate Scholarships - Master's
Masters Thesis Proposal: Identification and characterization of genes linked to Bardet-Biedl syndrome and cilia function
硕士论文提案:与 Bardet-Biedl 综合征和纤毛功能相关的基因的鉴定和表征
  • 批准号:
    316798-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Postgraduate Scholarships - Master's

相似海外基金

Genomic and proteomic approaches to understanding mitochondrial diversity in eukaryotic microbes
了解真核微生物线粒体多样性的基因组和蛋白质组方法
  • 批准号:
    RGPIN-2019-04336
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Genomic and proteomic approaches to understanding mitochondrial diversity in eukaryotic microbes
了解真核微生物线粒体多样性的基因组和蛋白质组方法
  • 批准号:
    RGPIN-2019-04336
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Genomic and proteomic approaches to understanding mitochondrial diversity in eukaryotic microbes
了解真核微生物线粒体多样性的基因组和蛋白质组方法
  • 批准号:
    RGPIN-2019-04336
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Genomic and proteomic approaches to understanding mitochondrial diversity in eukaryotic microbes
了解真核微生物线粒体多样性的基因组和蛋白质组方法
  • 批准号:
    DGECR-2019-00135
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Launch Supplement
Genomic, proteomic and microbiomic approaches to understanding the biology and pathogenesis of anaerobic protozoa
了解厌氧原生动物生物学和发病机制的基因组学、蛋白质组学和微生物组学方法
  • 批准号:
    390804
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Operating Grants
Eukaryotic organelles, parasites and multicellularity: comparative genomic and proteomic approaches.
真核细胞器、寄生虫和多细胞性:比较基因组学和蛋白质组学方法。
  • 批准号:
    287014
  • 财政年份:
    2013
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Operating Grants
Individualising care for patients with chronic hepatitis C: predicting side effects and treatment response using genomic and proteomic approaches.
慢性丙型肝炎患者的个体化护理:使用基因组和蛋白质组学方法预测副作用和治疗反应。
  • 批准号:
    nhmrc : 1017139
  • 财政年份:
    2011
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Postgraduate Scholarships
Finding new cellular factors of susceptibility/resistance to HIV-1 infection using a novel reporter virus and large-scale genomic/proteomic approaches
使用新型报告病毒和大规模基因组/蛋白质组学方法寻找 HIV-1 感染易感性/抵抗力的新细胞因子
  • 批准号:
    209564
  • 财政年份:
    2010
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Operating Grants
Developing approaches for modeling genomic and proteomic profiles in lung cancer
开发肺癌基因组和蛋白质组图谱建模方法
  • 批准号:
    7224332
  • 财政年份:
    2007
  • 资助金额:
    $ 2.7万
  • 项目类别:
Developing approaches for modeling genomic and proteomic profiles in lung cancer
开发肺癌基因组和蛋白质组图谱建模方法
  • 批准号:
    7902278
  • 财政年份:
    2007
  • 资助金额:
    $ 2.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了