Trajectory Analytics for Data-Driven Predictions and Sequential Decision-Making Under Sequence Uncertainty
序列不确定性下数据驱动预测和序列决策的轨迹分析
基本信息
- 批准号:RGPIN-2021-04249
- 负责人:
- 金额:$ 2.16万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Background. Healthcare trajectories are a series of healthcare operations processes (such as prevention, diagnostic, and treatment activities) and clinical pathways (such as disease progression) executed in the healthcare system. Identifying, analyzing, and improving the healthcare trajectories has a significant impact on the healthcare costs and patient outcomes by contributing to a) improved system performance, b) controlling disease progression, and c) improved transparency. Healthcare trajectories, which are hidden in the healthcare system's event logs, are highly complex and subject to tremendous variations. Therefore, a data-driven approach, which I refer to as TRajectory Analytics (TRA), is crucial for the characterization, analysis, and improvements of healthcare trajectories through the utilization of the enormous healthcare data and the exponentially-growing computing power we have seen over the last decade. TRA aims at analyzing data and extracting hidden trajectory patterns to generate knowledge regarding the complex sequence of events and actions. Nevertheless, the field of TRA, especially in the healthcare domain, is still in its infancy stages and struggles with various limitations in terms of providing reference data-driven modeling frameworks that encompass multiple analytical scopes, including descriptive, predictive, and prescriptive tasks. Objectives. Addressing the referenced methodological and practical gaps in the context of healthcare TRA is highly aligned with my overarching long-term objectives in developing analytical frameworks for blending predictive and prescriptive analytics to improve data-driven decision-making. In the short-term, I will undertake the following steps as the research objectives over the proposed five-year program of research: 1.Predictive TRA: Developing novel method(s) for discovering and predicting healthcare trajectories from data. 2.Descriptive TRA: Proposing methods for summarizing, visualizing, and reducing the complexity of the identified trajectories in (1) by identifying the clusters of the most common trajectories in optimal fashions. 3.Prescriptive TRA: Proposing optimization frameworks and solution procedures for sequential decision-making based on the explicit utilization of the information gained in (1)-(2). This program is possible through the application of my methodological expertise/experience in healthcare analytics and the availability of rich datasets unique to my lab. Impact. On the scientific side, this research program will deliver several novel methodologies in TRA and illustrates explicit connections between the various scopes of data analytics. On the practical side, it provides the healthcare sector with the tools, scalable to other sectors, that facilitate data-driven decision-making and evidence-based leadership. On the pedagogical side, it provides unique opportunities for training Canadian-trained HQPs in Artificial Intelligence (AI) with expertise in TRA.
背景医疗轨迹是医疗系统中执行的一系列医疗操作过程(如预防、诊断和治疗活动)和临床路径(如疾病进展)。识别、分析和改进医疗保健轨迹通过有助于a)改进的系统性能、B)控制疾病进展和c)改进的透明度而对医疗保健成本和患者结果具有显著影响。隐藏在医疗保健系统的事件日志中的医疗保健轨迹是高度复杂的,并且受到巨大变化的影响。因此,数据驱动的方法,我称之为TRajectory Analytics(TRA),对于通过利用巨大的医疗数据和我们在过去十年中看到的指数增长的计算能力来表征,分析和改善医疗保健轨迹至关重要。TRA旨在分析数据并提取隐藏的轨迹模式,以生成有关事件和动作的复杂序列的知识。然而,TRA领域,特别是在医疗保健领域,仍处于起步阶段,在提供参考数据驱动的建模框架方面存在各种限制,这些框架涵盖多个分析范围,包括描述性,预测性和规定性任务。 目标.在医疗TRA的背景下解决所引用的方法和实践差距与我在开发分析框架以混合预测性和规范性分析以改善数据驱动的决策方面的总体长期目标高度一致。在短期内,我将在拟议的五年研究计划中采取以下步骤作为研究目标:1.预测TRA:开发从数据中发现和预测医疗保健轨迹的新方法。 2.描述性TRA:提出通过以最佳方式识别最常见轨迹的集群来总结、可视化和降低(1)中识别的轨迹的复杂性的方法。3.规定TRA:在明确利用(1)-(2)中获得的信息的基础上,提出了序列决策的优化框架和求解过程。 该计划是通过我在医疗分析方面的方法学专业知识/经验的应用和我实验室独有的丰富数据集的可用性而实现的。 冲击在科学方面,该研究计划将在TRA中提供几种新颖的方法,并说明数据分析的各种范围之间的明确联系。在实践方面,它为医疗保健部门提供了可扩展到其他部门的工具,促进了数据驱动的决策和基于证据的领导。在教学方面,它提供了独特的机会,培训在TRA方面具有专业知识的人工智能(AI)的HQP。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zargoush, Manaf其他文献
Sequence of Functional Loss and Recovery in Nursing Homes
- DOI:
10.1093/geront/gnv099 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:5.7
- 作者:
Levy, Cari R.;Zargoush, Manaf;Alemi, Farrokh - 通讯作者:
Alemi, Farrokh
A resilient, robust transformation of healthcare systems to cope with COVID-19 through alternative resources.
- DOI:
10.1016/j.omega.2022.102750 - 发表时间:
2023-01 - 期刊:
- 影响因子:6.9
- 作者:
Ardakani, Elham Shaker;Larimi, Niloofar Gilani;Nejad, Maryam Oveysi;Hosseini, Mahsa Madani;Zargoush, Manaf - 通讯作者:
Zargoush, Manaf
Leveraging machine learning and big data for optimizing medication prescriptions in complex diseases: a case study in diabetes management
- DOI:
10.1186/s40537-020-00302-z - 发表时间:
2020-04-10 - 期刊:
- 影响因子:8.1
- 作者:
Hosseini, Mahsa Madani;Zargoush, Manaf;Kheirbek, Raya Elfadel - 通讯作者:
Kheirbek, Raya Elfadel
Examining the predictability and prognostication of multimorbidity among older Delayed-Discharge Patients: A Machine learning analytics
- DOI:
10.1016/j.ijmedinf.2021.104597 - 发表时间:
2021-10-04 - 期刊:
- 影响因子:4.9
- 作者:
Ghazalbash, Somayeh;Zargoush, Manaf;Papaioannou, Alexandra - 通讯作者:
Papaioannou, Alexandra
Prehospital prediction of hospital admission for emergent acuity patients transported by paramedics: A population-based cohort study using machine learning.
- DOI:
10.1371/journal.pone.0289429 - 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Strum, Ryan P.;Mowbray, Fabrice I.;Zargoush, Manaf;Jones, Aaron P. - 通讯作者:
Jones, Aaron P.
Zargoush, Manaf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zargoush, Manaf', 18)}}的其他基金
Trajectory Analytics for Data-Driven Predictions and Sequential Decision-Making Under Sequence Uncertainty
序列不确定性下数据驱动预测和序列决策的轨迹分析
- 批准号:
RGPIN-2021-04249 - 财政年份:2021
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Trajectory Analytics for Data-Driven Predictions and Sequential Decision-Making Under Sequence Uncertainty
序列不确定性下数据驱动预测和序列决策的轨迹分析
- 批准号:
DGECR-2021-00451 - 财政年份:2021
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Home Office National Crime and Justice Lab Policy: Crime Data Analytics UKRI Policy Fellowship
内政部国家犯罪和司法实验室政策:犯罪数据分析 UKRI 政策奖学金
- 批准号:
ES/Y004930/1 - 财政年份:2024
- 资助金额:
$ 2.16万 - 项目类别:
Fellowship
CellScope: A marketplace for recycling/upcycling Battery Cells from e-waste powered by traceable health analytics data
CellScope:从电子垃圾中回收/升级电池的市场,由可追踪的健康分析数据提供支持
- 批准号:
10114372 - 财政年份:2024
- 资助金额:
$ 2.16万 - 项目类别:
SME Support
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 2.16万 - 项目类别:
Standard Grant
REU Site: Multidisciplinary Graph Data Analytics
REU 网站:多学科图数据分析
- 批准号:
2349486 - 财政年份:2024
- 资助金额:
$ 2.16万 - 项目类别:
Standard Grant
Conference: Workshop on Sports Analytics to Strengthen Data Science Undergraduate Curriculum
会议:加强数据科学本科课程的体育分析研讨会
- 批准号:
2309891 - 财政年份:2024
- 资助金额:
$ 2.16万 - 项目类别:
Standard Grant
Research Coordination Network (RCN) for Privacy Preserving Data Sharing and Analytics
用于隐私保护数据共享和分析的研究协调网络 (RCN)
- 批准号:
2413978 - 财政年份:2024
- 资助金额:
$ 2.16万 - 项目类别:
Standard Grant
Project North AI - a new data and analytics platform that uses AI to support the financing and distribution of independent film
Project North AI - 一个新的数据和分析平台,利用人工智能支持独立电影的融资和发行
- 批准号:
10103511 - 财政年份:2024
- 资助金额:
$ 2.16万 - 项目类别:
Investment Accelerator
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2313738 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Standard Grant
IUCRC Planning Grant New Mexico State University: Center for Aviation Big Data Analytics [ABDA]
IUCRC 规划拨款 新墨西哥州立大学:航空大数据分析中心 [ABDA]
- 批准号:
2231654 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Standard Grant
Travel: Workshop on Clusters, Clouds, and Data Analytics for Scientific Computing 2024
旅行:2024 年科学计算集群、云和数据分析研讨会
- 批准号:
2336813 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Standard Grant