Design Principles, Analytical Methods, and Membrane Development for High-Pressure Reverse Osmosis
高压反渗透的设计原理、分析方法和膜开发
基本信息
- 批准号:570714-2021
- 负责人:
- 金额:$ 22.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the proposed work, we are partnering with a water-engineering firm with the primary aim of developing membrane materials that extend the operating range of reverse osmosis (RO). In RO, the applied hydraulic pressure must exceed the solution's osmotic pressure, which is a function of the salinity of the solution. Current membranes have typical maximum pressures of ~80 bar (~1200 psi), enabling a maximum salinity of ~1.4 M NaCl. We aim to develop membranes that operate up to ~150 bar (~2200 psi), almost doubling the attainable salinity to ~2.7 M NaCl. This high-pressure RO (HPRO) would be revolutionary for water management in the Canadian natural-resource industries, including mining, oil & gas, and pulp & paper. HPRO would efficiently maximize water recycling while minimizing waste for disposal. Our work will be divided into four main aims. In the first, we will assess the performance (and limitations) of current RO membranes at pressures up to 150 bar, particularly aiming to understand how performance is impacted by "compaction." In this process, the porous structure of the membrane becomes denser (less porous) because of the applied hydraulic pressure. The effect of compaction on transport remains understudied. In the second aim, we will use advanced microscopy tools to assess in detail how compaction impacts the pore structure of the membranes. In the third aim, we will use machine learning to develop a tool that would generate statistical 3D pore structures based on 2D electron micrographs. Such a tool would enable rapid generation of important pore structural data, which currently can only be assessed using highly time-intensive analytical tools. The tool will be useful for studying compaction. In the fourth aim, we will use high-throughput experimentation to optimize membrane synthesis, with the goal of creating membranes that will be resistant to compaction. Through this research scope, we hope to develop innovations that will be translated into commercial HPRO products for use by Canadian resource industries.
在提议的工作中,我们与一家水工程公司合作,主要目的是开发扩展反渗透(RO)操作范围的膜材料。在反渗透中,施加的液压压力必须超过溶液的渗透压,这是溶液盐度的函数。目前膜的典型最大压力为~80 bar (~1200 psi),最大盐度为~1.4 M NaCl。我们的目标是开发可工作至~ 150bar (~ 2200psi)的膜,将可达到的矿化度提高近一倍,达到~2.7 M NaCl。这种高压反渗透(HPRO)将对加拿大自然资源行业的水管理产生革命性的影响,包括采矿、石油和天然气、纸浆和造纸。HPRO将有效地最大限度地回收水,同时最大限度地减少废物处理。我们的工作将分为四个主要目标。首先,我们将评估当前反渗透膜在高达150bar压力下的性能(和局限性),特别是旨在了解“压实”对性能的影响。在这个过程中,由于施加的液压压力,膜的多孔结构变得更致密(更少多孔)。压实对运输的影响仍未得到充分研究。在第二个目标中,我们将使用先进的显微镜工具来详细评估压实如何影响膜的孔隙结构。在第三个目标中,我们将使用机器学习开发一种工具,该工具将基于二维电子显微图生成统计3D孔隙结构。这种工具可以快速生成重要的孔隙结构数据,目前只能使用高度耗时的分析工具进行评估。这个工具对研究压实很有用。在第四个目标中,我们将使用高通量实验来优化膜合成,目标是创建抗压实的膜。通过这一研究范围,我们希望开发创新,将其转化为商业HPRO产品,供加拿大资源行业使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Werber, JayJR其他文献
Werber, JayJR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
- 批准号:51778175
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Continuing Grant
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
- 批准号:
2339483 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y036433/1 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Principles of Intrinsically Disordered Proteins
职业:本质无序蛋白质的进化原理
- 批准号:
2338129 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Continuing Grant














{{item.name}}会员




