Assessment of uncertainty in 2D and 3D geostatistical models for use in steam assisted gravity drainage prediction
用于蒸汽辅助重力排水预测的 2D 和 3D 地质统计模型的不确定性评估
基本信息
- 批准号:556022-2020
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Steam assisted gravity drainage (SAGD) is used to produce hydrocarbons from the Athabasca Oil Sands. Geostatistical methods are used to model properties of the oil sands that are then used to forecast oil production, steam usage and energy consumption. Properties include porosity, bitumen content, permeability and rock type. Modeling these properties involves estimating or simulating unknown quantities at every unsampled location in the deposit on a grid and usually with uncertainty. These estimates are made using all available information such as geophysical surveys, well data, seismic, geochemical, geomechanical, etc. The overall goal of the proposed work is to accurately predict uncertainty in a SAGD environment by correctly accounting for uncertainty in all modeling aspects. When implementing current best practice uncertainty assessment methodologies, there is a discrepancy between uncertainty calculated using 2D or 3D models. Typically 2D models are used to calculate oil in place global resources/reserves while 3D models are used for oil production prediction with flow simulation. The goals of this project are to (1) reconcile differences between 2D and 3D uncertainty models (2) propose methodologies to effectively estimate global uncertainty consistently for 2D or 3D models including trend uncertainty and (3) investigate the impact of correctly modeling uncertainty on SAGD performance prediction, well placement and economic/environmental considerations for multiple SAGD pads.
蒸汽辅助重力泄油(SAGD)用于从阿萨巴斯卡油砂中生产碳氢化合物。地质统计学方法用于模拟油砂的性质,然后用于预测石油产量,蒸汽使用量和能源消耗。性质包括孔隙度、沥青含量、渗透率和岩石类型。对这些性质进行建模涉及在网格上估计或模拟存款中每个未采样位置处的未知量,并且通常具有不确定性。这些估计是使用所有可用的信息,如地球物理调查,井数据,地震,地球化学,地质力学等,所提出的工作的总体目标是准确地预测在SAGD环境中的不确定性,通过正确地考虑在所有建模方面的不确定性。在实施当前最佳实践不确定性评估方法时,使用2D或3D模型计算的不确定性之间存在差异。通常,2D模型用于计算石油地质储量/全球资源量,而3D模型用于通过流动模拟进行石油产量预测。该项目的目标是(1)协调二维和三维不确定性模型之间的差异(2)提出方法,以有效地估计二维或三维模型的全局不确定性,包括趋势不确定性,以及(3)研究正确建模不确定性对SAGD性能预测的影响,以及多个SAGD垫的经济/环境考虑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boisvert, JeffJ其他文献
Boisvert, JeffJ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boisvert, JeffJ', 18)}}的其他基金
Quantification of the value of data for calculating uncertainty and managing risk
量化数据价值以计算不确定性和管理风险
- 批准号:
568535-2021 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Alliance Grants
Wildland fire management using near real time high resolution remote sensing data
使用近实时高分辨率遥感数据进行荒地火灾管理
- 批准号:
561248-2020 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Alliance Grants
Collaborative Machine Learning: using information from multiple mineral deposits to improve decision making
协作机器学习:利用多个矿藏的信息来改进决策
- 批准号:
577571-2022 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Alliance Grants
相似国自然基金
应用ISOCS监测侵蚀区土壤中137Cs,210Pbex,7Be的适用性
- 批准号:40701099
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
空间数据不确定性的若干问题研究
- 批准号:40352002
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
- 批准号:
2343727 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
- 批准号:
EP/Y000145/1 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
The Role of Ethnic Racial Discrimination on the Development of Anxious Hypervigilance in Latina Youth
民族种族歧视对拉丁裔青少年焦虑过度警觉的影响
- 批准号:
10752122 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分学习
- 批准号:
DP240102050 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Projects
High Dimensional Approximation, Learning, and Uncertainty
高维近似、学习和不确定性
- 批准号:
DP240100769 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Projects
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
- 批准号:
EP/X041093/1 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant