Radar-Informed automated back-analysis of rock fall hazards

雷达信息自动反分析落石危险

基本信息

  • 批准号:
    576858-2022
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Rock falls pose a significant hazard to infrastructure and livelihood in natural mountainous terrain as well as engineered slopes along roadsides and in open-pit mines. It is of utmost importance for engineers to understand the potential for, and consequences of, these rock fall events in slope stability design. Current state-of-the art rock fall simulation software are highly sophisticated in their consideration of local topography and rigid body dynamics, however engineers lack tools to determine the appropriate parameters to select for their analyses. Radar trackers, which have been successfully deployed to record the motion of rock fall events with high temporal and spatial resolution, present a great opportunity to characterize the in-situ behaviour of rock slopes. The numerical model parameters can be calibrated so that the modelled rock fall trajectory matches the measured trajectory, and the calibrated parameters can then be applied to nearby regions with similar geology. The present proposal outlines a methodology to conduct this calibration automatically and robustly, thereby allowing engineers to model rock fall hazards more accurately at their sites.The methodology is formulated as an optimization where the loss function is the summed distance between the modelled and measured bounce points. A Gaussian Process is employed to estimate the true form of the objective function, which allows us to minimize the number of function calls of the rock fall simulator. This additionally allows us to consider the error of the goodness-of-fit to provide practitioners with error bounds on the final solution.
罗克瀑布对自然山区的基础设施和生计以及沿着路边和露天矿的工程边坡构成重大危险。在边坡稳定性设计中,工程师了解这些落石事件的可能性和后果至关重要。当前最先进的落石模拟软件在考虑局部地形和刚体动力学方面非常复杂,然而工程师缺乏工具来确定用于其分析的适当参数。雷达跟踪器,已成功地部署到记录岩石的运动与高的时间和空间分辨率的事件,提供了一个很好的机会来描述岩石边坡的原位行为。可以校准数值模型参数,使得建模的岩石坠落轨迹与测量的轨迹匹配,然后可以将校准的参数应用于具有类似地质的附近区域。目前的建议概述了一种方法来进行自动和鲁棒的校准,从而使工程师能够更准确地在其sites.The方法建模落石灾害制定为一个优化的损失函数之间的总和距离建模和测量反弹点。采用高斯过程来估计目标函数的真实形式,这使得我们能够最小化落石模拟器的函数调用次数。这还允许我们考虑拟合优度的误差,为从业者提供最终解决方案的误差范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li, QiuyiBQL其他文献

Li, QiuyiBQL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Fellowship
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
  • 批准号:
    2904538
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Studentship
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
  • 批准号:
    2338371
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Rapid, Scalable, and Joint Assessment of Seismic Multi-Hazards and Impacts: From Satellite Images to Causality-Informed Deep Bayesian Networks
地震多重灾害和影响的快速、可扩展和联合评估:从卫星图像到因果关系深度贝叶斯网络
  • 批准号:
    2242590
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
  • 批准号:
    2345437
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
  • 批准号:
    MR/Y034457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
  • 批准号:
    2339996
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
CAREER: Advanced and Uncertainty-Informed Site Investigation
职业:高级和不确定性现场调查
  • 批准号:
    2340596
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
  • 批准号:
    2345438
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了