Learning and inference with large image corpora

使用大型图像语料库进行学习和推理

基本信息

  • 批准号:
    RGPIN-2020-06848
  • 负责人:
  • 金额:
    $ 4.01万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This proposal targets two domains within my broader research program on computer vision and machine learning: 1) deep latent variable models for large-scale data; and 2) algorithms for 3D molecular reconstruction with electron cryo-microscopy (cryo-EM). We recently formulated a new class of probabilistic encoder-decoder based on two principles: 1) symmetry, for which the encoder and decoder are consistent; and 2) high mutual information between observations and latent states. The formulation appears to address 2 problems with variational auto-encoders, ie, its asymmetric loss, with an approximate encoder, and its tendency to produce pathological results, known as posterior collapse. Preliminary results show the approach produces excellent models with high mutually information, and stable training. We aim to 1) to complete the development of the theoretical basis for this model, and test it empirically with high-dimensional image and language data. We then plan to extend it to support semi-supervised image translation tasks, and the learning of conditional and compositional deep representations on large scale corpora, with applications to few-shot learning. The goal of Cryo-EM is to estimate 3D bio-molecular structure at atomic resolutions given 2D images from an electron microscope. Our recent algorithms are now used in a state-of-the-art software pipeline called cryoSPARC. We propose several directions toward the next generation of cryo-EM algorithms: 1) We address a long-standing problem in cryo-EM, namely how to measure the quality of estimated structures in a principaled fashion. We propose to develop a new principled formulation as a form of cross-validation from statistical machine learning; 2) We plan to develop new algorithms for heterogeneous particles (vs current methods that assume particles are identical up to a rigid transform). The new method, non-uniform refinement, will allow signal-to-noise levels to vary spatially, yielding improved resolution of estimated structures; 3) We plan use deep learning to denoise estimated 3D maps, using new techniques that do not reequire noiseless ground truth data, within a meta-learning framework; 4) We plan to develop algorithms for reconstructing flexible proteins using a combination of normal mode analysis, thermodynamics, and parameterized deformations to learn deep conditional particle dynamics, yielding new algorithms for highly dynamic proteins. Impact: Unsupervised learning may be the next breakthrough in machine learning, thereby avoiding to need to collect of vast amounts of annotated training data. Cryo-EM has been disruptive in molecular biology and durg discovery. The new methods proposed here will maintain our leadership in this exicting field. Finally, training students in learning and vision is essential; Previous HQP from my group, all residing in Canada, include M Brubaker (Borealis AI), M Norouzi (Google Brain), R Urtasun (Uber ATG), and Leonid Sigal (UBC).
该提案针对我在计算机视觉和机器学习方面更广泛的研究计划中的两个领域:1)大规模数据的深层潜变量模型; 2)电子冷冻显微镜(cryo-EM)的3D分子重建算法。我们最近基于两个原则制定了一类新的概率编码器-解码器:1)对称性,编码器和解码器是一致的; 2)观察和潜在状态之间的高互信息。该公式似乎解决了2个问题与变分自动编码器,即,其不对称损失,与一个近似的编码器,其倾向于产生病理结果,被称为后崩溃。初步结果表明,该方法产生了良好的模型,具有高互信息,稳定的训练。我们的目标是:1)完成该模型的理论基础的开发,并使用高维图像和语言数据对其进行实证测试。然后,我们计划扩展它以支持半监督图像翻译任务,以及在大规模语料库上学习条件和组合深度表示,并应用于少量学习。Cryo-EM的目标是在电子显微镜给出的2D图像下以原子分辨率估计3D生物分子结构。我们最近的算法现在被用于一个名为cryogenic的最先进的软件管道中。我们提出了下一代cryo-EM算法的几个方向:1)我们解决了cryo-EM中一个长期存在的问题,即如何以一种原则性的方式测量估计结构的质量。我们建议开发一种新的原则性公式,作为统计机器学习交叉验证的一种形式; 2)我们计划开发用于异质粒子的新算法(与假设粒子在刚性变换之前相同的当前方法相比)。新方法,非均匀细化,将允许信噪比水平在空间上变化,从而提高估计结构的分辨率; 3)我们计划使用深度学习来对估计的3D地图进行降噪,使用不需要无噪声地面真实数据的新技术,在元学习框架内; 4)我们计划开发使用正常模式分析,热力学,和参数化变形来学习深度条件粒子动力学,从而为高度动态的蛋白质产生新的算法。影响:无监督学习可能是机器学习的下一个突破,从而避免需要收集大量带注释的训练数据。冷冻电镜在分子生物学和杜尔格发现方面具有颠覆性。这里提出的新方法将保持我们在这一领域的领导地位。最后,对学生进行学习和视觉方面的培训是必不可少的;我所在团队的前HQP都居住在加拿大,包括M Brubaker(Borealis AI),M Norouzi(Google Brain),R Urtasun(Uber ATG)和Leonid Sigal(UBC)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fleet, David其他文献

A preliminary, randomized, double-blind, placebo-controlled trial of L-carnosine to improve cognition in schizophrenia
  • DOI:
    10.1016/j.schres.2012.10.001
  • 发表时间:
    2012-12-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Chengappa, K. N. Roy;Turkin, Scott R.;Fleet, David
  • 通讯作者:
    Fleet, David
A prospective, randomized, placebo-controlled, double-blind trial about safety and efficacy of combined treatment with alteplase (rt-PA) and Cerebrolysin in acute ischaemic hemispheric stroke
  • DOI:
    10.1111/j.1747-4949.2012.00901.x
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Lang, Wilfried;Stadler, Christian H.;Fleet, David
  • 通讯作者:
    Fleet, David

Fleet, David的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fleet, David', 18)}}的其他基金

Learning and inference with large image corpora
使用大型图像语料库进行学习和推理
  • 批准号:
    RGPIN-2020-06848
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Learning and inference with large image corpora
使用大型图像语料库进行学习和推理
  • 批准号:
    RGPIN-2020-06848
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Looking at People and Web-Scale Image Analysis
观察人物和网络规模的图像分析
  • 批准号:
    RGPIN-2015-05630
  • 财政年份:
    2019
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Looking at People and Web-Scale Image Analysis
观察人物和网络规模的图像分析
  • 批准号:
    RGPIN-2015-05630
  • 财政年份:
    2018
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Looking at People and Web-Scale Image Analysis
观察人物和网络规模的图像分析
  • 批准号:
    RGPIN-2015-05630
  • 财政年份:
    2017
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Video-Based Face Verification for Biometrics
基于视频的生物识别人脸验证
  • 批准号:
    501222-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Engage Grants Program
Looking at People and Web-Scale Image Analysis
观察人物和网络规模的图像分析
  • 批准号:
    RGPIN-2015-05630
  • 财政年份:
    2016
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Looking at People and Web-Scale Image Analysis
观察人物和网络规模的图像分析
  • 批准号:
    RGPIN-2015-05630
  • 财政年份:
    2015
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Video-based analysis of human motion
基于视频的人体运动分析
  • 批准号:
    105391-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Video-based analysis of human motion
基于视频的人体运动分析
  • 批准号:
    105391-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Distributed Machine Learning Methodology and System for Real-time Inference with Large-scale Point Clouds Towards Mobility Innovation
利用大规模点云进行实时推理的分布式机器学习方法和系统,迈向移动创新
  • 批准号:
    23H00464
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
  • 批准号:
    10563598
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10438246
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10599340
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
  • 批准号:
    2046874
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Continuing Grant
Learning and inference with large image corpora
使用大型图像语料库进行学习和推理
  • 批准号:
    RGPIN-2020-06848
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Transfer Learning for Large-Scale Inference: General Framework and Data-Driven Algorithms
协作研究:大规模推理的迁移学习:通用框架和数据驱动算法
  • 批准号:
    2015259
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Transfer Learning for Large-Scale Inference: General Framework and Data-Driven Algorithms
协作研究:大规模推理的迁移学习:通用框架和数据驱动算法
  • 批准号:
    2015339
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
Structural Learning and Statistical Inference for Large-Scale Data
大规模数据的结构学习和统计推断
  • 批准号:
    2013486
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
Learning and inference with large image corpora
使用大型图像语料库进行学习和推理
  • 批准号:
    RGPIN-2020-06848
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了