Collaborative Research: Transfer Learning for Large-Scale Inference: General Framework and Data-Driven Algorithms
协作研究:大规模推理的迁移学习:通用框架和数据驱动算法
基本信息
- 批准号:2015339
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Transfer learning provides crucial techniques for utilizing data from related studies that are conducted under different contexts or on diverse populations. It is an important topic with a wide range of applications in integrative genomics, neuroimaging, computer vision and signal processing. This research work will provide new tools to scientific researchers who routinely collect and analyze high dimensional and complex data across different sources and platforms. This project aims to develop new analytical tools to improve conventional methods by delivering more informative and interpretable scientific findings. The developed transfer learning algorithms, which can reliably extract and combine knowledge from diverse data types and across different studies, will help address important issues from genomics applications. User-friendly software packages will be developed and made publicly available. Scientific researchers can use the tools to translate dispersed and heterogeneous data sources into new knowledge and medical benefits. This will help improve the understanding of the role of various genetic factors in complex diseases, and accelerate the development of new medicines and treatments in a cost-effective way. Transfer learning for large-scale inference aims to extract and transfer the knowledge learned from related source domains to assist the simultaneous inference of thousands or even millions of parameters in the target domain. We aim to develop a general framework to gain understanding of the benefits and caveats of transfer learning in a wide range of large-scale inference problems including sparse estimation, false discovery rate analysis, sparse linear discriminant analysis and high-dimensional regression. Our research addresses two key issues in transfer learning: (a) What should be transferred? (b) How to transfer and prevent negative learning? We aim to pursue three major research goals. The first is to develop a class of computationally efficient and robust transfer learning algorithms for high-dimensional sparse inference. The general strategy is to first learning the local sparsity structure of the high-dimensional object through auxiliary data and then apply the structural knowledge to the target domain by adaptively placing differential weights or setting varied thresholds on corresponding coordinates. The second is to formalize a decision-theoretic framework for high-dimensional transfer learning that is applicable across the sparse and non-sparse regimes. Along this direction, we aim to develop a class of kernelized nonparametric empirical Bayes methods for data-sharing shrinkage estimation and multiple testing. The third is to address the urgent needs and new challenges arising from important genomics applications using the newly developed methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
迁移学习提供了利用在不同背景下或不同人群中进行的相关研究数据的关键技术。它在整合基因组学、神经影像学、计算机视觉和信号处理等领域有着广泛的应用。这项研究工作将为科学研究人员提供新的工具,他们经常收集和分析不同来源和平台的高维和复杂数据。该项目旨在开发新的分析工具,通过提供更多信息和可解释的科学发现来改进传统方法。开发的迁移学习算法可以从不同的数据类型和不同的研究中可靠地提取和联合收割机知识,将有助于解决基因组学应用中的重要问题。将开发方便用户的软件包并向公众提供。科学研究人员可以使用这些工具将分散和异构的数据源转化为新的知识和医疗效益。这将有助于更好地了解各种遗传因素在复杂疾病中的作用,并以具有成本效益的方式加快新药和治疗方法的开发。大规模推理的迁移学习旨在提取和迁移从相关源域中学习到的知识,以辅助目标域中数千甚至数百万个参数的同时推理。我们的目标是开发一个通用框架,以了解迁移学习在广泛的大规模推理问题中的好处和注意事项,包括稀疏估计,错误发现率分析,稀疏线性判别分析和高维回归。我们的研究解决了迁移学习中的两个关键问题:(a)应该迁移什么?(b)如何转移和防止消极学习?我们致力于实现三大研究目标。第一个是开发一类计算效率高且鲁棒的高维稀疏推理迁移学习算法。一般的策略是先通过辅助数据学习高维对象的局部稀疏结构,然后通过在相应的坐标上自适应地设置不同的权重或设置不同的阈值,将结构知识应用于目标域。第二个是形式化一个决策理论框架,用于高维迁移学习,适用于稀疏和非稀疏制度。沿着这个方向,我们的目标是发展一类核化的非参数经验贝叶斯方法的数据共享收缩估计和多重检验。第三个奖项是为了解决使用新开发方法的重要基因组学应用所带来的紧迫需求和新挑战。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heteroscedasticity-Adjusted Ranking and Thresholding for Large-Scale Multiple Testing
- DOI:10.1080/01621459.2020.1840992
- 发表时间:2019-10
- 期刊:
- 影响因子:3.7
- 作者:Luella Fu;Bowen Gang;Gareth M. James;Wenguang Sun
- 通讯作者:Luella Fu;Bowen Gang;Gareth M. James;Wenguang Sun
Structure–Adaptive Sequential Testing for Online False Discovery Rate Control
- DOI:10.1080/01621459.2021.1955688
- 发表时间:2020-02
- 期刊:
- 影响因子:3.7
- 作者:Bowen Gang;Wenguang Sun;Weinan Wang
- 通讯作者:Bowen Gang;Wenguang Sun;Weinan Wang
ZAP: Z -Value Adaptive Procedures for False Discovery Rate Control with Side Information
ZAP:利用辅助信息进行错误发现率控制的 Z 值自适应程序
- DOI:10.1111/rssb.12557
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Leung, Dennis;Sun, Wenguang
- 通讯作者:Sun, Wenguang
LAWS: A locally adaptive weighting and screening approach to spatial multiple testing
LAWS:用于空间多重测试的局部自适应加权和筛选方法
- DOI:10.1080/01621459.2020.1859379
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Tony Cai;Wenguang Sun;Yin Xia
- 通讯作者:Yin Xia
A General Framework for Empirical Bayes Estimation in Discrete Linear Exponential Family
- DOI:
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Trambak Banerjee;Qiang Liu;Gourab Mukherjee;Wengunag Sun
- 通讯作者:Trambak Banerjee;Qiang Liu;Gourab Mukherjee;Wengunag Sun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Tong其他文献
Image-based acquisition and modeling of polarimetric reflectance
基于图像的偏振反射率采集和建模
- DOI:
10.1145/3386569.3392387 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Seung;Tizian Zeltner;Hyunjin Ku;In;Xin Tong;Wenzel Jakob;Min H. Kim - 通讯作者:
Min H. Kim
Acupuncture for the Treatment of Hiccups following Stroke: A Systematic Review and Meta-Analysis
针灸治疗中风后打嗝:系统评价和荟萃分析
- DOI:
10.1136/acupmed-2015-011024 - 发表时间:
2017 - 期刊:
- 影响因子:2.5
- 作者:
J. Yue;Ming Liu;Jun Li;Yuming Wang;E. Hung;Xin Tong;Zhong;Qin;B. Golianu - 通讯作者:
B. Golianu
The Innovative Talents Training Mode of the Generic Architecture Discipline--Take the An Introduction to Soundscape Design As Example
通用建筑学科创新人才培养模式--以《声景设计导论》为例
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Zhengzheng Tong;Zhenkun Han;Xin Tong - 通讯作者:
Xin Tong
QTrace: An interface for customizable full system instrumentation
QTrace:可定制的完整系统仪器的界面
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Xin Tong;Jack Luo;Andreas Moshovos - 通讯作者:
Andreas Moshovos
Development of Time-of-Flight Polarized Neutron Imaging at the China Spallation Neutron Source
中国散裂中子源飞行时间偏振中子成像技术的发展
- DOI:
10.1088/0256-307x/39/6/062901 - 发表时间:
2022-06 - 期刊:
- 影响因子:3.5
- 作者:
Ahmed Salman;Jianrong Zhou;Jianqing Yang;Junpei Zhang;Chuyi Huang;Fan Ye;Zecong Qin;Xingfen Jiang;Syed Mohd Amir;Wolfgang Kreuzpaintner;Zhijia Sun;Tianhao Wang;Xin Tong - 通讯作者:
Xin Tong
Xin Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Tong', 18)}}的其他基金
Collaborative Research: Development of Classification Theory and Methods for Objective Asymmetry, Sample Size Limitation, Labeling Ambiguity, and Feature Importance
合作研究:针对客观不对称性、样本量限制、标签歧义和特征重要性的分类理论和方法的发展
- 批准号:
2113500 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Robust and Interpretable Bayesian Quantile Longitudinal Analysis in Social and Behavioral Sciences
社会和行为科学中稳健且可解释的贝叶斯分位数纵向分析
- 批准号:
1951038 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Development of a general classification framework under the Neyman-Pearson Paradigm, with biomedical and social applications
在内曼-皮尔逊范式下开发通用分类框架,并具有生物医学和社会应用
- 批准号:
1613338 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327571 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219796 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
- 批准号:
2232875 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
- 批准号:
2230593 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219795 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
- 批准号:
2246509 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327572 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant