Stabilization and destabilization of moduli spaces

模空间的稳定和不稳定

基本信息

  • 批准号:
    RGPIN-2021-02679
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

In my work I apply the methods of algebraic topology to problems in differential topology, low-dimensional topology, and number theory. I do so by studying the homotopy type of moduli spaces. Moduli spaces contain information about mathematical objects of a given type, and families thereof. By applying topological invariants to moduli spaces you learn a lot about the objects in question. Many moduli spaces depend on a parameter, and it is a surprising phenomenon that they become easier to understand as we let the parameter go to infinity. The theme of my research is that you can recover information about the individual moduli spaces from this limiting value, and vice versa; "destabilization" and "stabilization". My first goal is to find rational models of moduli spaces of high-dimensional manifolds, or equivalently their diffeomorphism groups. To do so I will build on methods developed to understand diffeomorphisms of disks in joint work with Oscar Randal-Williams. Diffeomorphisms of disks are the universal correction term between diffeomorphisms and self-embeddings of a given manifold. We may thus "stabilize" the disk by adding handles, study the diffeomorphisms and self-embeddings of the resulting high-dimensional analogues of surfaces, and then "destabilize" by comparing these. Once we understand the correction term, we use rational models for spaces of self-embeddings to give similar models for diffeomorphisms. Through a remarkable algebraic coincidence, this has deep applications to Torelli groups of surfaces. Together with my collaborators, postdoctoral fellows, and students, I will work out this program and explore its applications to the study of manifolds and other fields such as symplectic and Riemannian geometry. My second goal is to understand the relationship between the homology of general linear groups of a ring and its algebraic K-theory. For fields, I want to relate several filtrations on algebraic K-theory. On the one hand, the "motivic filtration" contains deep number-theoretic information. On the other hand, the "rank filtration" is related to homological stability for general linear groups. In joint work with Soren Galatius and Oscar Randal-Williams I proved that the rank filtration has a vanishing line conjectured by Soule and Beilinson for the motivic filtration. Clarifying the relationship between these two filtrations is thus of great importance, and I propose two lines of investigation to do so. I will work on this with my collaborators and postdoctoral fellows. For rings of integers, I am interested in the (co)homology of arithmetic groups with coefficients in a representation, such as the Steinberg module. These are conjectured to vanish in a range, and if so, this gives new results on homological stability and Vandiver's conjecture. I want to relate these questions to Voronoi complexes and perfect forms. Extensions to other rings make good projects for students.
在我的工作中,我应用代数拓扑的方法来解决微分拓扑、低维拓扑和数论中的问题。我通过研究模空间的同伦类型来做到这一点。 模空间包含关于给定类型的数学对象及其族的信息。通过将拓扑不变量应用于模空间,您可以了解有关对象的很多信息。许多模空间依赖于一个参数,当我们让参数变得无穷大时,它们变得更容易理解,这是一个令人惊讶的现象。我研究的主题是,你可以从这个极限值中恢复关于各个模空间的信息,反之亦然;“不稳定”和“稳定”。我的第一个目标是找到高维流形的模空间的有理模型,或者等价地找到它们的自同构群。为了做到这一点,我将建立在与奥斯卡·兰德尔-威廉姆斯共同工作的方法上,以理解圆盘的超同构。圆盘的自同态是流形的自同态与自嵌入之间的普遍修正项。因此,我们可以通过添加把手来“稳定”圆盘,研究由此产生的高维曲面类似物的自同构和自嵌入,然后通过比较这些来“不稳定”。一旦我们理解了校正项,我们就可以使用自嵌入空间的有理模型来给出类似的自同态模型。通过一个显着的代数巧合,这有深刻的应用Torelli群的表面。与我的合作者,博士后研究员和学生一起,我将制定这个计划,并探索其在流形和其他领域(如辛几何和黎曼几何)研究中的应用。 我的第二个目标是了解环的一般线性群的同调与其代数K-理论之间的关系。对于域,我想联系代数K-理论上的几个滤子。一方面,“动机过滤”蕴含着深刻的数论信息;另一方面,“秩滤除”与一般线性群的同调稳定性有关。在与索伦·加拉修斯和奥斯卡·兰德尔-威廉姆斯的合作中,我证明了等级过滤有一条消失线,这条消失线是由索尔和贝林森为动机过滤而建立的。因此,澄清这两种过滤之间的关系是非常重要的,我提出了两条调查路线。我将与我的合作者和博士后研究员一起工作。对于整数环,我感兴趣的是算术群的(上)同调与系数在一个表示,如斯坦伯格模。这些被证明是消失的范围内,如果是这样,这给出了新的结果同调稳定性和Vandiver的猜想。我想把这些问题与Voronoi复形和完全型联系起来。对其他环的扩展为学生提供了很好的项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kupers, Alexander其他文献

The May–Milgram filtration andℰk–cells
May–Milgram 过滤和–k–细胞
  • DOI:
    10.2140/agt.2021.21.105
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Klang, Inbar;Kupers, Alexander;Miller, Jeremy
  • 通讯作者:
    Miller, Jeremy
E_2-cells and mapping class groups
E_2-细胞和映射类组
  • DOI:
    10.1007/s10240-019-00107-8
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Galatius, Søren;Kupers, Alexander;Randal-Williams, Oscar
  • 通讯作者:
    Randal-Williams, Oscar
The cohomology of Torelli groups is algebraic
Torelli 群的上同调是代数的
  • DOI:
    10.1017/fms.2020.41
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kupers, Alexander;Randal-Williams, Oscar
  • 通讯作者:
    Randal-Williams, Oscar
On the Generalized Bykovskiĭ Presentation of Steinberg Modules
关于 Steinberg 模块的广义 Bykovskiä 表示
  • DOI:
    10.1093/imrn/rnab028
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Kupers, Alexander;Miller, Jeremy;Patzt, Peter;Wilson, Jennifer C
  • 通讯作者:
    Wilson, Jennifer C
Characteristic classes of bundles of K3 manifolds and the Nielsen realization problem
K3 流形束的特征类和 Nielsen 实现问题
  • DOI:
    10.2140/tunis.2021.3.75
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Giansiracusa, Jeffrey;Kupers, Alexander;Tshishiku, Bena
  • 通讯作者:
    Tshishiku, Bena

Kupers, Alexander的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kupers, Alexander', 18)}}的其他基金

Stabilization and destabilization of moduli spaces
模空间的稳定和不稳定
  • 批准号:
    DGECR-2021-00126
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Stabilization and destabilization of moduli spaces
模空间的稳定和不稳定
  • 批准号:
    RGPIN-2021-02679
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Involvement of muscarinic cholinergic receptors within the dorsal hippocampus in the destabilization of object-in-place memories
背侧海马内的毒蕈碱胆碱能受体参与就地物体记忆的不稳定
  • 批准号:
    547977-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Neural mechanisms underlying memory destabilization and modification
记忆不稳定和修改的神经机制
  • 批准号:
    RGPIN-2018-04216
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical research on the ground state destabilization hypothesis in enzymatic reactions
酶反应基态失稳假说的理论研究
  • 批准号:
    22K05045
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Biological carbon stabilization and destabilization: peering into microbial hot spots to understand soil carbon turnover and terrestrial energy flows
生物碳稳定和不稳定:深入研究微生物热点以了解土壤碳周转和陆地能量流
  • 批准号:
    RGPIN-2019-04158
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Destabilization of wormhole formation by quantum effects: Formulation and illustration with path-integral method
量子效应对虫洞形成的不稳定:用路径积分方法进行公式化和说明
  • 批准号:
    22K03623
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetohydrodynamic simulation study on solar prominence turbulence associated with magnetic destabilization
与磁失稳相关的太阳日珥湍流的磁流体动力学模拟研究
  • 批准号:
    20K14519
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Stabilization and destabilization of moduli spaces
模空间的稳定和不稳定
  • 批准号:
    DGECR-2021-00126
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Memory Destabilization and Cocaine-Cue Induced Reinstatement in Rat
大鼠记忆不稳定和可卡因诱导的恢复
  • 批准号:
    10599998
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
The Role of PKMzeta in Memory Destabilization and Reconsolidation
PKMzeta 在记忆不稳定和再巩固中的作用
  • 批准号:
    RGPIN-2017-05140
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of the neural mechanisms underlying novelty-induced object memory destabilization in the perirhinal cortex
嗅周皮层新奇引起的物体记忆不稳定的神经机制研究
  • 批准号:
    535690-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了