Causal Inference with Massive and Complex data: High-dimensionality and Network Interference

海量复杂数据的因果推理:高维和网络干扰

基本信息

  • 批准号:
    RGPIN-2019-07052
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Modern observational databases hold great promise for new discoveries. To date, a lot of advances have been made by finding associations in massive and complex data sets. Finding patterns of associations is an important first step, but does not by itself lead to actionable insights. This motivates the proposed program to go beyond association and assess causation in "big data" settings, so that we can better understand the infinite complexity of nature, and use such knowledge to make better decisions. Specifically we focus on addressing two key challenges posed by contemporary massive and complex data sets: high-dimensionality and complex network structure. We are going to develop a novel set of methods driven by applications in data-intensive fields such as neuroimaging, genetics and network analysis. These advances will push the frontiers of causal inference beyond conventional settings, and at the same time bring causal thinking to big data analytics. This program will also provide training opportunities for promising undergraduate and graduate students as well as postdoctoral researchers, especially those from historically underrepresented groups. Methods developed through this grant will be coded in R and made publicly available along with publication of related research reports.
现代观测数据库为新发现带来了巨大的希望。迄今为止,通过在大量复杂的数据集中寻找关联已经取得了很多进展。发现关联模式是重要的第一步,但其本身并不能带来可操作的见解。这促使拟议的计划超越关联,并在“大数据”环境中评估因果关系,以便我们能够更好地理解自然界的无限复杂性,并利用这些知识做出更好的决策。 具体来说,我们专注于解决当代大规模和复杂的数据集所带来的两个关键挑战:高维和复杂的网络结构。我们将开发一套新的方法,这些方法由神经成像、遗传学和网络分析等数据密集型领域的应用驱动。这些进步将推动因果推理的前沿超越传统设置,同时将因果思维引入大数据分析。 该计划还将为有前途的本科生和研究生以及博士后研究人员提供培训机会,特别是那些来自历史上代表性不足的群体。通过该资助开发的方法将以R编码,并随相关研究报告的出版而沿着公开。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Linbo其他文献

Segmentation of yeast cell's bright-field image with an edge-tracing algorithm
使用边缘跟踪算法分割酵母细胞的明场图像。
  • DOI:
    10.1117/1.jbo.23.11.116503
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Wang, Linbo;Li, Simin;Li, Hui
  • 通讯作者:
    Li, Hui
A Two-Coordinate Cobalt(II) Imido Complex with NHC Ligation: Synthesis, Structure, and Reactivity
Feasibility of using Y2Ti2O7 nanoparticles to fabricate high strength oxide dispersion strengthened Fe-Cr-Al steels
利用Y2Ti2O7纳米粒子制备高强度氧化物弥散强化Fe-Cr-Al钢的可行性
  • DOI:
    10.1016/j.matdes.2015.08.118
  • 发表时间:
    2015-12-25
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Liu, Tong;Wang, Linbo;Zhang, Hongtao
  • 通讯作者:
    Zhang, Hongtao
Modelling infant failure rate of electromechanical products with multilayered quality variations from manufacturing process
对制造过程中具有多层质量变化的机电产品的早期故障率进行建模
Cell migration orchestrates migrasome formation by shaping retraction fibers.
  • DOI:
    10.1083/jcb.202109168
  • 发表时间:
    2022-04-04
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Fan, Changyuan;Shi, Xuemeng;Zhao, Kaikai;Wang, Linbo;Shi, Kun;Liu, Yan-Jun;Li, Hui;Ji, Baohua;Jiu, Yaming
  • 通讯作者:
    Jiu, Yaming

Wang, Linbo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Linbo', 18)}}的其他基金

Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    RGPIN-2019-07052
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    RGPIN-2019-07052
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    RGPAS-2019-00093
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    DGECR-2019-00453
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Launch Supplement
Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    RGPAS-2019-00093
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    RGPIN-2019-07052
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
  • 批准号:
    2347760
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Bilinear Inference Based on Belief Propagation for Non-Orthogonal Multiple Access with Massive IoT Devices
基于置信传播的海量物联网设备非正交多址双线性推理
  • 批准号:
    23K13335
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    RGPIN-2019-07052
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Aggregated Monte Carlo: A General Framework for Distributed Bayesian Inference in Massive Spatiotemporal Data
合作研究:聚合蒙特卡罗:海量时空数据中分布式贝叶斯推理的通用框架
  • 批准号:
    2220840
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    RGPIN-2019-07052
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    RGPAS-2019-00093
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Collaborative Research: Aggregated Monte Carlo: A General Framework for Distributed Bayesian Inference in Massive Spatiotemporal Data
合作研究:聚合蒙特卡罗:海量时空数据中分布式贝叶斯推理的通用框架
  • 批准号:
    1854662
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    DGECR-2019-00453
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Launch Supplement
Causal Inference with Massive and Complex data: High-dimensionality and Network Interference
海量复杂数据的因果推理:高维和网络干扰
  • 批准号:
    RGPAS-2019-00093
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Collaborative Research: Aggregated Monte Carlo: A General Framework for Distributed Bayesian Inference in Massive Spatiotemporal Data
合作研究:聚合蒙特卡罗:海量时空数据中分布式贝叶斯推理的通用框架
  • 批准号:
    1854667
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了