Privacy-Preserving Graph Analytics Engine
隐私保护图分析引擎
基本信息
- 批准号:551061-2020
- 负责人:
- 金额:$ 5.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph mining can bring great social and economic values but leak sensitive information about individuals. Though differential privacy has appeared as a strong privacy guarantee for private data analysis, existing systems and algorithms for differential privacy mainly support tabular data. Due to the complex and diverse information within graphs, extending existing privacy notions, algorithms, and systems for tabular data to graph data face many challenges. So far, there are no real-world graph database systems that can support the analysis of the private graphs. The primary objective of this research is to build a privacy-preserving graph analytics engine that can answer interactive queries on private graphs accurately and efficiently while ensuring a provable privacy guarantee. We intend to formalize a novel and customizable privacy framework for graph data, support interactive graph queries using state-of-the-art graph database systems, and enable graph analysis in a distributed setting.
图挖掘可以带来巨大的社会和经济价值,但会泄露个人的敏感信息。尽管差分隐私已经成为隐私数据分析的强有力的隐私保障,但现有的差分隐私系统和算法主要支持表格数据。由于图表中的信息复杂多样,将表格数据的现有隐私概念、算法和系统扩展到图表数据面临着许多挑战。到目前为止,还没有现实世界的图数据库系统可以支持私有图的分析。这项研究的主要目标是构建一个保护隐私的图分析引擎,能够准确高效地回答私有图上的交互式查询,同时确保可证明的隐私保证。我们打算形式化一种新颖且可定制的图数据隐私框架,支持使用最先进的图数据库系统的交互式图查询,并在分布式设置中启用图分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
He, XiX其他文献
He, XiX的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Z000262/1 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Research Grant
Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
- 批准号:
ST/Y50998X/1 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant














{{item.name}}会员




