Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
基本信息
- 批准号:RGPIN-2020-04218
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Given the ubiquity of large data sets, statistics and machine learning are used in numerous applications areas to perform inference and prediction. However, many data sets consist of sensitive personal information, and it is vital to make sure that the results of these procedures do not reveal this private information. As an example, suppose we are doing a hypothesis test on genetic data involving individuals who are HIV-positive. Recent results of Homer et al. have shown that, under certain conditions, it is possible to re-identify individuals who participated in such a study. Naturally, giving the socially-stigmatic nature of this condition, this would be a gross violation of individual privacy, thus discouraging individuals from participating in said research study. The goal of this research is to develop methods and tools for private statistics, and for a given task, answer the following central question: how much more data do we need to ensure that our solution to the task does not violate the privacy of the users? I will push forward simultaneously in both theoretical and practical directions. I plan to build on my recent theoretical work on fundamental problems in the area in a number of ways. First, my group and I will develop new algorithms and analysis in order to solve more complex and general tasks. Second, we will study privacy settings that directly match those applied in practice at large-scale deployments, and design time- and data-efficient algorithms for these settings. Finally, we will experiment with and tune theoretical algorithms to make code which is effective on real data. While there has been significant work conducted on privacy and statistics, this work differs primarily in two ways: a focus on understanding properties of the underlying population, rather than a specific data set, and investigating the cost of privacy with finite amounts of data, rather than the "asymptotic" setting where the amount of data tends to infinity. As statistical methods are only becoming more and more common, and privacy concerns are an increasingly common topic of public discourse, the importance of rigorous methods for private statistics is paramount. In particular, due to recent events demonstrating the power of massive amounts of user data (e.g., the Facebook-Cambridge Analytica data scandal), significant amounts of new policy are likely to be written to prevent such events from reoccurring. In turn, this will necessitate new highly qualified personnel trained in data privacy at virtually every company which deals with user data -- roles which my students will be prepared to fill.
鉴于大数据集的无处不在,统计和机器学习被用于许多应用领域来执行推理和预测。然而,许多数据集包含敏感的个人信息,确保这些程序的结果不会泄露这些私人信息是至关重要的。例如,假设我们正在对涉及HIV阳性个体的基因数据进行假设测试。荷马等人的最新结果。已经表明,在某些条件下,有可能重新确定参与这项研究的个人。自然,考虑到这种情况的社会耻辱性质,这将是对个人隐私的严重侵犯,从而阻碍个人参与所述研究。这项研究的目标是开发私人统计的方法和工具,并对于给定的任务,回答以下核心问题:我们还需要多少数据才能确保我们对该任务的解决方案不侵犯用户的隐私?我将在理论和实践两个方向上同步推进。我计划以我最近关于该领域基本问题的理论工作为基础,采取多种方式。首先,我和我的团队将开发新的算法和分析,以解决更复杂和一般的任务。其次,我们将研究与大规模部署实践中应用的隐私设置直接匹配的隐私设置,并为这些设置设计节省时间和数据的算法。最后,我们将对理论算法进行实验和调整,以使代码在实际数据上有效。虽然在隐私和统计方面已经做了大量工作,但这项工作主要有两个不同之处:侧重于了解基本总体的属性,而不是特定的数据集;调查有限数据量的隐私成本,而不是数据量趋于无穷的“渐近”环境。随着统计方法变得越来越普遍,隐私问题成为公共话语中越来越常见的话题,严格的私人统计方法是至关重要的。特别是,由于最近发生的事件表明了海量用户数据的力量(例如,Facebook-Cambridge Analytica数据丑闻),可能会制定大量新政策,以防止此类事件再次发生。反过来,这将需要在几乎每一家处理用户数据的公司都需要接受过数据隐私培训的新的高素质人员--我的学生将准备填补这些角色。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kamath, Gautam其他文献
Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment
推进差异化隐私:现实世界部署的现状和未来方向
- DOI:
10.1162/99608f92.d3197524 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Cummings, Rachel;Desfontaines, Damien;Evans, David;Geambasu, Roxana;Huang, Yangsibo;Jagielski, Matthew;Kairouz, Peter;Kamath, Gautam;Oh, Sewoong;Ohrimenko, Olga - 通讯作者:
Ohrimenko, Olga
Actively Avoiding Nonsense in Generative Models
积极避免生成模型中的废话
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hanneke, Steve;Tauman Kalai, Adam;Kamath, Gautam;Tzamos, Christos - 通讯作者:
Tzamos, Christos
Robustness Implies Privacy in Statistical Estimation
稳健性意味着统计估计中的隐私
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hopkins, Samuel B.;Kamath, Gautam;Majid, Mahbod;Narayanan, Shyam - 通讯作者:
Narayanan, Shyam
Random Restrictions of High-Dimensional Distributions and Uniformity Testing with Subcube Conditioning
高维分布的随机限制和子立方条件的均匀性测试
- DOI:
10.5555/3458064.3458085 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Canonne, Clement;Chen, Xi;Kamath, Gautam;Levi, Amit;Waingarten, Erik - 通讯作者:
Waingarten, Erik
Which Distribution Distances are Sublinearly Testable?
哪些分布距离是可次线性测试的?
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Daskalakis, Constantinos;Kamath, Gautam;Wright, John - 通讯作者:
Wright, John
Kamath, Gautam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kamath, Gautam', 18)}}的其他基金
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
RGPAS-2020-00077 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
RGPAS-2020-00077 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
RGPIN-2020-04218 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
DGECR-2020-00264 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Launch Supplement
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
RGPAS-2020-00077 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
RGPIN-2020-04218 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1B: Foundations for Differentially Private Internet Measurement
合作研究:IMR:MM-1B:差分隐私互联网测量的基础
- 批准号:
2220433 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
RGPAS-2020-00077 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Collaborative Research: IMR: MM-1B: Foundations for Differentially Private Internet Measurement
合作研究:IMR:MM-1B:差分隐私互联网测量的基础
- 批准号:
2220434 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
RGPAS-2020-00077 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
RGPIN-2020-04218 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
DGECR-2020-00264 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Launch Supplement
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
RGPAS-2020-00077 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Theoretical Foundations of Differentially Private Statistics
差分隐私统计的理论基础
- 批准号:
RGPIN-2020-04218 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual