Multi-omic single-cell, electronic health record, and biomedical knowledge graph data integration using interpretable deep learning approaches
使用可解释的深度学习方法进行多组学单细胞、电子健康记录和生物医学知识图数据集成
基本信息
- 批准号:576153-2022
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As electronic health record (EHR) and genomic technologies such as single-cell multi-omic sequencing becoming mature, we are on the verge of convergence in terms of using one type of data (e.g., single-cell genomic) to understand the other and vice versa. Multi-modal data integration of the single-cell genomic and heterogeneous EHR data will lead to new mechanistic insights into the human complex phenotypes. The objective of the proposed international collaboration is to build a machine learning (ML) method to integrate EHR and genomic data. Our approach will address missing data problem that are common in data integration from multiple studies by leveraging existing comprehensively curated biomedical knowledge graph from large systems like the Universal Medical Language System (UMLS), Gene Ontology (GO), String database, which consists of known inter-network and intra-network connections for the phenotype and gene vertices. By using a deep learning approach, we will compute for each gene or each phenotype a numerical vector from the knowledge graph, which can then be used to model the actual EHR and gene expression data. We will represent these numerical vectors by their topic mixture memberships for a finite set of latent topic distributions over the genes and phenotypes. Examining top genes and phenotypes with high probabilities under the same topic will reveal gene regulatory network modules that govern the phenotypic comorbidities. Furthermore, we will account for multi-modal data distribution and confounding effects when integrating data from multiple sources. The collaboration will combine domain expertise from Dr. Fei Wang from Cornell University and Dr. Yue Li from McGill University in tackling the highly interdisciplinary research project, bridging gaps across disciplines spanning across ML, genomics, and health informatics. We will build an intelligent digital platform that enables researchers and health-related practitioners to not only explore plausible phenotypic and genomic connections but also integrate their own data. The success of the project will accelerate the paradigm shift of integrative analytical frameworks using ML approaches in Canada.
随着电子健康记录(EHR)和基因组技术(如单细胞多组测序)的成熟,我们在使用一种类型的数据(例如,单细胞基因组)来理解另一个,反之亦然。 单细胞基因组和异质EHR数据的多模态数据集成将导致对人类复杂表型的新的机理见解。拟议的国际合作的目标是建立一种机器学习(ML)方法来整合EHR和基因组数据。我们的方法将通过利用来自大型系统(如通用医学语言系统(UMLS),基因本体论(GO),字符串数据库)的现有全面策划的生物医学知识图来解决多项研究数据集成中常见的数据缺失问题,该数据库由表型和基因顶点的已知网络间和网络内连接组成。通过使用深度学习方法,我们将从知识图中为每个基因或每个表型计算一个数值向量,然后可以用于对实际的EHR和基因表达数据进行建模。我们将代表这些数字向量的主题混合成员的一组有限的潜在主题分布的基因和表型。在同一主题下检查具有高概率的顶级基因和表型将揭示控制表型共病的基因调控网络模块。此外,我们将考虑多模态数据分布和混杂效应时,整合来自多个来源的数据。此次合作将联合收割机结合康奈尔大学Fei Wang博士和麦吉尔大学Yue Li博士的领域专业知识,以解决高度跨学科的研究项目,弥合ML,基因组学和健康信息学等学科之间的差距。我们将建立一个智能数字平台,使研究人员和健康相关的从业人员不仅能够探索合理的表型和基因组联系,还能整合自己的数据。该项目的成功将加速加拿大使用ML方法的综合分析框架的范式转变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li, YueY其他文献
Li, YueY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li, YueY', 18)}}的其他基金
Cross-province federated machine learning of electronic health records in Canada
加拿大电子健康记录跨省联合机器学习
- 批准号:
577137-2022 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
相似海外基金
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Single-cell multi-omic analysis of opioid-mediated HIV disease pathogenesis
阿片类药物介导的 HIV 疾病发病机制的单细胞多组学分析
- 批准号:
10813914 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Integrative analysis of multi-omic signatures and cellular function in human pancreas across developmental timeline at single-cell spatial resolution
以单细胞空间分辨率对人类胰腺跨发育时间线的多组学特征和细胞功能进行综合分析
- 批准号:
10776295 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Multi-omic dissection of clonal hematopoiesis-associated diseases
克隆造血相关疾病的多组学解剖
- 批准号:
10644764 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Enhancing multi-omic single cell sequencing to resolve fundamental biological mechanisms in humans and non-human organisms
增强多组学单细胞测序以解决人类和非人类生物体的基本生物学机制
- 批准号:
BB/W019922/1 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
A Multi-omic approach towards improving candidate gene identification and variant prioritization in patients with congenital heart disease
改善先天性心脏病患者候选基因识别和变异优先顺序的多组学方法
- 批准号:
10360965 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Integrative multi-omic risk assessment at diagnosis and during disease progression in African-Americans with Inflammatory bowel disease
非洲裔美国人炎症性肠病诊断和疾病进展期间的综合多组学风险评估
- 批准号:
10707294 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Integrative multi-omic risk assessment at diagnosis and during disease progression in African-Americans with Inflammatory bowel disease
非洲裔美国人炎症性肠病诊断和疾病进展期间的综合多组学风险评估
- 批准号:
10543004 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
A Multi-omic approach towards improving candidate gene identification and variant prioritization in patients with congenital heart disease
改善先天性心脏病患者候选基因识别和变异优先顺序的多组学方法
- 批准号:
10544032 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Multi-omic genetic regulatory signatures underlying tissue complexity of diabetes in the pancreas at single-cell spatial resolution
单细胞空间分辨率下胰腺糖尿病组织复杂性的多组学遗传调控特征
- 批准号:
10684817 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别: