A Multi-omic approach towards improving candidate gene identification and variant prioritization in patients with congenital heart disease

改善先天性心脏病患者候选基因识别和变异优先顺序的多组学方法

基本信息

  • 批准号:
    10544032
  • 负责人:
  • 金额:
    $ 11.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary Identification of the genetic basis for congenital heart disease (CHD) has benefitted from advances in exome sequencing (ES) and genome sequencing (GS) pipelines. Large cohort studies, such as the NHLBI-funded Pediatric Cardiovascular Genomics Consortium (PCGC), have sequenced the exomes or genomes of nearly 3000 CHD patients and identified variants with a high likelihood of contributing to CHD. Using approaches that identified rare variants enriched in CHD patient populations and damaging effect prediction algorithms that supported pathogenicity, a list of potentially pathogenic variants has been identified. In further support of pathogenicity, these variants are found in genes which have prior association with human CHD or have been implicated in heart development in animal models. While this approach has aided in identification of novel variants, more than one potential genetic variant is identified in many cases rendering follow-up analyses difficult. In the proposed exploratory grant, we will investigate the use of machine learning to use data obtained from transcriptomic analysis of both mouse and induced pluripotent stem cell (iPSC) models of CHD. Rather than building a common analytical pipeline by including all possible candidate genes for all CHDs, we will use genes differentially regulated in CHD model systems that display phenotypes observed in the patient to prioritize variants. To achieve this, the patient’s diagnosis will be used as input to identify RNA-seq datasets from mouse/iPSC models with similar diagnoses from the Gene Expression Omnibus (GEO) database. The genes differentially expressed in these datasets will carry additional weight in the prioritization pipeline. Simultaneously, we will examine the expression of the genes in single-cell RNAseq datasets from developing human embryonic hearts. This will allow us to evaluate a gene’s expression in relevant cell-types that contribute to normal heart development. Genes that are observed in multiple patients with overlapping subtypes of CHD will be presented as prioritized variants. This analysis pipeline will not exclude any genetic variant from consideration as a candidate but will use expression analysis in CHD-model systems and single-cell transcriptomic data to rank the variants. The result of this pipeline will be a ranked list of variants in each patient that are ordered based on the information from the datasets mentioned above and current standards of variant prioritization such as minor allele frequency and predicted damaging effect. As a direct consequence, we expect to discover novel candidate genes for CHD and identify genes with a higher burden in a subset of CHD cases. The creation, training and testing of the machine learning algorithm will provide a platform for variant prioritization in patients with CHD and this model has the potential to be extended to other congenital malformations.
项目摘要 先天性心脏病(CHD)遗传基础的鉴定得益于外显子组的进展 测序(ES)和基因组测序(GS)管道。大型队列研究,如NHLBI资助的 儿科心血管基因组学联盟(PCGC)已经对近100种心血管疾病的外显子组或基因组进行了测序。 3000例CHD患者和确定的极有可能导致CHD的变异。使用的方法, 确定了CHD患者人群中富集的罕见变异和破坏性影响预测算法, 支持的致病性,已确定了一系列潜在致病性变体。为进一步支持 致病性,这些变异体存在于与人类CHD有先前关联的基因中,或者已经被 与动物模型中的心脏发育有关。虽然这种方法有助于识别新的 由于基因变异,在许多情况下,发现了一种以上的潜在遗传变异,使得后续分析变得困难。 在拟议的探索性资助中,我们将研究使用机器学习来使用从 本发明涉及CHD的小鼠和诱导多能干细胞(iPSC)模型的转录组学分析。而不是 建立一个共同的分析管道,包括所有可能的候选基因的所有心脏病,我们将使用基因 在显示在患者中观察到的表型的CHD模型系统中差异调节, 变体。为了实现这一点,患者的诊断将被用作输入,以识别RNA-seq数据集, 小鼠/iPSC模型,其具有来自基因表达综合数据库(GEO)的类似诊断。的基因 在这些数据集中的差异表达将在优先化管道中具有额外的权重。与此同时, 我们将研究来自发育中的人类胚胎的单细胞RNAseq数据集中的基因表达, 心中这将使我们能够评估基因在相关细胞类型中的表达,这些细胞类型有助于正常心脏 发展将介绍在多个CHD重叠亚型患者中观察到的基因 作为优先变量。这种分析管道将不排除任何遗传变异作为考虑因素。 候选人,但将使用CHD模型系统和单细胞转录组数据中的表达分析来对 变体。该流水线的结果将是每个患者中的变体的排名列表,这些变体是基于患者的基因序列排序的。 来自上述数据集的信息和变体优先级的当前标准,例如次要 等位基因频率和预测的损伤效应。作为一个直接的结果,我们希望发现新的候选人, 基因的CHD和确定基因的CHD病例的子集中具有较高的负担。创建、培训和 机器学习算法的测试将为CHD患者的变体优先级提供平台, 该模型具有扩展到其他先天性畸形的潜力。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vidu Garg其他文献

Vidu Garg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vidu Garg', 18)}}的其他基金

A Multi-omic approach towards improving candidate gene identification and variant prioritization in patients with congenital heart disease
改善先天性心脏病患者候选基因识别和变异优先顺序的多组学方法
  • 批准号:
    10360965
  • 财政年份:
    2022
  • 资助金额:
    $ 11.55万
  • 项目类别:
Epigenetic Mechanisms Underlying Maternal Diabetes Associated Cardiac Malformations
孕产妇糖尿病相关心脏畸形的表观遗传机制
  • 批准号:
    9816152
  • 财政年份:
    2019
  • 资助金额:
    $ 11.55万
  • 项目类别:
Epigenetic Mechanisms Underlying Maternal Diabetes Associated Cardiac Malformations
孕产妇糖尿病相关心脏畸形的表观遗传机制
  • 批准号:
    10202715
  • 财政年份:
    2019
  • 资助金额:
    $ 11.55万
  • 项目类别:
Epigenetic Mechanisms Underlying Maternal Diabetes Associated Cardiac Malformations
孕产妇糖尿病相关心脏畸形的表观遗传机制
  • 批准号:
    10462586
  • 财政年份:
    2019
  • 资助金额:
    $ 11.55万
  • 项目类别:
Weinstein Cardiovascular Development Conference
韦恩斯坦心血管发展会议
  • 批准号:
    9261292
  • 财政年份:
    2017
  • 资助金额:
    $ 11.55万
  • 项目类别:
The Role of Notch in Calcific Aortic Valve Disease
切迹在钙化性主动脉瓣疾病中的作用
  • 批准号:
    9143866
  • 财政年份:
    2016
  • 资助金额:
    $ 11.55万
  • 项目类别:
Molecular Mechanisms of Aortic Valve Formation
主动脉瓣形成的分子机制
  • 批准号:
    8915429
  • 财政年份:
    2015
  • 资助金额:
    $ 11.55万
  • 项目类别:
Exome sequencing and functional studies in familial CHD
家族性先心病的外显子组测序和功能研究
  • 批准号:
    8892228
  • 财政年份:
    2012
  • 资助金额:
    $ 11.55万
  • 项目类别:
Exome sequencing and functional studies in familial CHD
家族性先心病的外显子组测序和功能研究
  • 批准号:
    8297881
  • 财政年份:
    2012
  • 资助金额:
    $ 11.55万
  • 项目类别:
Exome sequencing and functional studies in familial CHD
家族性先心病的外显子组测序和功能研究
  • 批准号:
    8550126
  • 财政年份:
    2012
  • 资助金额:
    $ 11.55万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 11.55万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 11.55万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了