Code Generation for Specialized Hardware-Supported Functional Units
专用硬件支持的功能单元的代码生成
基本信息
- 批准号:537432-2018
- 负责人:
- 金额:$ 3.72万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in Graphics Processing Units (GPU) started a major trend in the industry towards specialized accelerators. These accelerators were then repurposed for extensive usage in other domains that can benefit from similar hardware architecture design. The effective use of GPUs for the training of Deep Convolution Networks led to the design of Tensor Processing Units (TPUs), also known by different names in offerings by other vendors, which have specific architecture features for matrix operations. This proposal is based on the idea that the functional units originally designed for TPUs can also be repurposed for general-purpose numerical computing and that there might be performance and energy/performance gains in doing so. Thus, the main objectives of the proposed research include: - To investigate the repurposing of functional units originally designed for TPUs for general-purpose high-performance numerical computation.- To study multiple possible configurations of specialized functional units for the execution of numerical-computing loop nests.- To determine which program analysis, and compiler-based code transformations, are necessary to port code written in programming models with, or without, parallel annotations and to make them suitable to benefit from execution in such functional units.- To design profitability functions that can be used to determine which code transformations should be applied to loop nests to make them performant in the functional units and also to enable runtime decisions of when a given computation should be executed in one such functional unit.The proposed research will support the development of solutions that may result in higher performance for scientific and data-analytics applications. The process of developing these solutions will also attempt to leverage emerging automated learning techniques and to integrate them in the code-generation process.
图形处理单元(GPU)的进步开启了行业向专用加速器发展的主要趋势。然后,这些加速器被重新用于其他领域的广泛使用,这些领域可以从类似的硬件架构设计中受益。GPU在深度卷积网络训练中的有效使用导致了张量处理单元(TPU)的设计,在其他供应商的产品中也有不同的名称,它们具有特定的矩阵运算架构功能。该建议基于这样的想法,即最初为TPU设计的功能单元也可以重新用于通用数值计算,并且这样做可能会提高性能和能源/性能。因此,拟议研究的主要目标包括:-调查最初为TPU设计的功能单元的重新利用,以用于通用的高性能数值计算。研究用于执行数值计算循环嵌套的专用功能单元的多种可能配置。确定哪些程序分析和基于编译器的代码转换对于移植在具有或不具有并行注释的编程模型中编写的代码是必要的,并使它们适合于从这些功能单元中的执行中受益。为了设计盈利功能,可用于确定哪些代码转换应应用于循环嵌套,使其在功能单元中的性能,并使运行时的决定,当一个给定的计算应该在一个这样的功能单元中执行。拟议的研究将支持解决方案的开发,可能会导致更高的性能,为科学和数据分析应用。开发这些解决方案的过程还将尝试利用新兴的自动化学习技术,并将其集成到代码生成过程中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amaral, JoseN其他文献
Amaral, JoseN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
- 批准号:
2347575 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Cooperative Agreement
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Continuing Grant
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
- 批准号:
DP240101322 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Discovery Projects