Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
基本信息
- 批准号:RGPIN-2020-04075
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the behaviour of complex networked systems as clouds, CRANs, and social networks is critical as their deployments continue to grow rapidly. Another important class of problems is the development of methodologies to understand dependencies between different data sets so that we can obtain better forecasts and understand the temporal flow of information. The proposed research will have applications to weather prediction, financial markets, and medical imaging. The proposed research will consist of model building, the development of analytical tools, and the design of efficient algorithms to achieve the goals. The research addresses challenges related to operating and delivering real-time services on clouds, distributed servers and in 5G systems, and ways of detecting time dependencies in information flow to provide better predictive power. Of interest is the understanding of how to build distributed network architectures to deliver low latency performance and parsimonious prediction models. The research will provide better understanding on the design of load balancing in clouds and information retrieval when systems are in high load and understanding other load balancing strategies such as redundancy type mechanisms in large systems. Drawing on methodologies from stochastic models, randomized algorithms, convex optimization, graph approximation, and high-- dimensional statistics the research will focus on: 1) The development of low latency algorithms for load balancing and information retrieval in large distributed architectures such as clouds or distributed caching systems, 2) Understanding the information dynamics and consensus among a large group of interacting agents with social network applications and problems of the spread of infection, and 3) Understanding the temporal dependence in time series data from different sources with the aim of developing parsimonious representations for prediction algorithms. The first two themes are characterized by scale in the numbers of interacting entities and while the third involves inference of high dimensional statistics from big data. Success in this research will have important scientific and technological contributions. On the scientific side we will obtain new understanding on good latency policies and extend mean-field techniques to a larger class of models. A better understanding of redundancy models will also be of use in other important applications such as organ exchange networks and hospital surgery scheduling. Understanding the dynamics of information flow in random networks will allow us to design better algorithms for faster information flow that can be critical in both social network and military applications. Finally obtaining better predictive models to deal with time series data is crucial in a wide variety of applications arising in IoT, medical imaging, finance, econometric models, and weather prediction.
随着云、CRANs和社交网络等复杂网络系统的部署持续快速增长,理解它们的行为至关重要。另一类重要的问题是开发方法来理解不同数据集之间的依赖关系,以便我们能够获得更好的预测并理解信息的时间流。拟议中的研究将应用于天气预报、金融市场和医学成像。建议的研究将包括建立模型,开发分析工具,以及设计有效的算法来实现目标。该研究解决了与在云、分布式服务器和5G系统上运行和提供实时服务相关的挑战,以及检测信息流中的时间依赖性以提供更好预测能力的方法。我们感兴趣的是理解如何构建分布式网络架构以提供低延迟性能和简洁的预测模型。该研究将有助于更好地理解云环境中负载平衡的设计和系统高负载时的信息检索,以及大型系统中冗余类型机制等其他负载平衡策略。利用随机模型、随机算法、凸优化、图近似和高维统计的方法,研究将集中在:1)在大型分布式架构(如云或分布式缓存系统)中开发用于负载平衡和信息检索的低延迟算法;2)理解与社交网络应用程序交互的大型代理之间的信息动态和共识以及感染传播问题;3)了解来自不同来源的时间序列数据的时间依赖性,目的是为预测算法开发简洁的表示。前两个主题的特点是相互作用实体数量的规模,而第三个主题涉及从大数据中推断高维统计数据。这项研究的成功将有重要的科学和技术贡献。在科学方面,我们将获得对良好延迟策略的新理解,并将平均场技术扩展到更大的模型类别。更好地理解冗余模型也将用于器官交换网络和医院手术调度等其他重要应用。了解随机网络中信息流的动态将使我们能够设计出更好的算法,以实现更快的信息流,这在社交网络和军事应用中都是至关重要的。最后,获得更好的预测模型来处理时间序列数据对于物联网、医疗成像、金融、计量经济模型和天气预报等各种应用至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mazumdar, Ravi其他文献
Delay and capacity trade-offs in mobile ad hoc networks: A global perspective
- DOI:
10.1109/tnet.2007.905154 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:3.7
- 作者:
Sharma, Gaurav;Mazumdar, Ravi;Shroff, Ness B. - 通讯作者:
Shroff, Ness B.
Mazumdar, Ravi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mazumdar, Ravi', 18)}}的其他基金
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
- 批准号:
RGPIN-2020-04075 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
- 批准号:
RGPIN-2020-04075 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for online ad markets with time constraints
适用于有时间限制的在线广告市场的高效算法
- 批准号:
501092-2016 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Complex interacting networks and systems: Models, analysis, and algorithms
复杂的交互网络和系统:模型、分析和算法
- 批准号:
RGPIN-2015-05218 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for online ad markets with time constraints
适用于有时间限制的在线广告市场的高效算法
- 批准号:
501092-2016 - 财政年份:2018
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Complex interacting networks and systems: Models, analysis, and algorithms
复杂的交互网络和系统:模型、分析和算法
- 批准号:
RGPIN-2015-05218 - 财政年份:2018
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Complex interacting networks and systems: Models, analysis, and algorithms
复杂的交互网络和系统:模型、分析和算法
- 批准号:
RGPIN-2015-05218 - 财政年份:2017
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for online ad markets with time constraints
适用于有时间限制的在线广告市场的高效算法
- 批准号:
501092-2016 - 财政年份:2017
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Complex interacting networks and systems: Models, analysis, and algorithms
复杂的交互网络和系统:模型、分析和算法
- 批准号:
RGPIN-2015-05218 - 财政年份:2016
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Complex interacting networks and systems: Models, analysis, and algorithms
复杂的交互网络和系统:模型、分析和算法
- 批准号:
RGPIN-2015-05218 - 财政年份:2015
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Projects
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
- 批准号:
RGPIN-2016-03787 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Training Program in Big Data Systems Neuroscience
大数据系统神经科学培训计划
- 批准号:
10630961 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Distributed Systems Support for Processing Big Data from Sensor Networks
分布式系统支持处理来自传感器网络的大数据
- 批准号:
RGPIN-2019-06776 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multiscale Decision-making for Process Operations and Energy Systems, and Incorporating Big Data Analytics
针对流程操作和能源系统的高级多尺度决策,并结合大数据分析
- 批准号:
RGPIN-2018-04108 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Understanding of Big Data for Smart Systems
智能系统大数据的自适应理解
- 批准号:
RGPIN-2020-05588 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Boosting Multimedia Big Data Systems
推动多媒体大数据系统
- 批准号:
RGPIN-2017-06594 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Training Program in Big Data Systems Neuroscience
大数据系统神经科学培训计划
- 批准号:
10411631 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research: Next Big Research Challenges in Cyber-Physical Systems
协作研究:网络物理系统的下一个重大研究挑战
- 批准号:
2240222 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant