Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems

用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具

基本信息

  • 批准号:
    RGPIN-2017-05785
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Data science and data engineering have arguably become some of the most important research fields in this century. These fields are based on fundamental branches of science and engineering, namely, information technology, sensor technology, statistics, operations research, optimization, artificial intelligence, data mining and machine learning.Along with human centric applications, some of these techniques are now being recommended by researchers in machine centric applications in which data is manufactured by machines and decisions are also made by machines based on Machine to Machine (M2M)' learning.Presently, an important research question is how to exploit the available Big Data sets since, by definition, they consist of large volumes of data, acquired at high velocity, and in a variety of forms. Traditional data-processing and analysis techniques become inadequate.The objective of this proposal is to develop algorithms and tools that are designed specifically to analyze and to extract knowledge from Big Data that are obtained from industrial systems. The extracted knowledge should lead to an understanding of how various components of a complex system influence each other and interact with their environment, and how an accurate prediction of the degradation can be obtained in a parallel computing framework.The proposed methodology is based on an approach called Logical Analysis of Data (LAD), which is a data mining, machine learning approach that is based on Boolean logical reasoning. It extracts knowledge in the form of patterns that distinguish and characterize sets of data, and that identify some phenomena of interest. Different LAD' s algorithms that are used to extract patterns in supervised and unsupervised learning will be considered in parallel computing frameworks; namely, enumeration techniques, mixed integer linear programming, and metaheuristics algorithms, mainly genetic algorithms, and ant colonies. The two parallel frameworks that will be used are Hadoop MapReduce and Spark; both are available in an open source environment, thus they are available to the public.We intend to present to the scientific community scaled up algorithms in an open source environment. As such, every interested individual can use them, improve upon them and add to them. The impact of this research is the possibility of learning, finding, understanding physical complex phenomena that are not fully understood yet, and the exploitation of this knowledge in decision making. Depending on the specific applications in which these algorithms will be used, this knowledge can lead to an increase in safety and security, energy savings, protection of the environment, and increased efficiency in consuming natural resources. It will also lead to intelligent systems that can make the right decision at the right moment. Eventually, this will lead to self-sustaining and sustainable systems.
数据科学和数据工程可以说是本世纪最重要的研究领域之一。这些领域基于科学和工程的基本分支,即信息技术、传感器技术、统计学、运筹学、优化、人工智能、数据挖掘和机器学习。沿着以人为本的应用,这些技术中的一些现在被研究人员推荐用于以机器为中心的应用中,在这些应用中,数据由机器制造,并且决策也由基于机器的机器做出。目前,一个重要的研究问题是如何利用可用的大数据集,因为根据定义,它们由高速获取的大量数据组成,并且形式多样。传统的数据处理和分析技术变得不足。本提案的目标是开发专门用于分析和提取从工业系统获得的大数据中的知识的算法和工具。提取的知识应该导致一个复杂的系统的各个组成部分如何相互影响,并与他们的环境相互作用的理解,以及如何准确预测的退化可以在一个并行计算framework.The建议的方法是基于一种方法,称为逻辑分析数据(LAD),这是一种数据挖掘,机器学习的方法,是基于布尔逻辑推理。它 以模式的形式提取知识,这些模式区分和表征数据集,并识别一些感兴趣的现象。在并行计算框架中,将考虑用于在监督和无监督学习中提取模式的不同LAD算法;即枚举技术、混合整数线性规划和元分析算法,主要是遗传算法和蚁群。将使用的两个并行框架是Hadoop MapReduce和Spark;两者都可以在开源环境中使用,因此它们可以向公众提供。我们打算在开源环境中向科学界展示扩展算法。因此,每个感兴趣的人都可以使用它们、改进它们并对其进行添加。这项研究的影响是学习,发现,理解尚未完全理解的物理复杂现象的可能性,以及在决策中利用这些知识。根据使用这些算法的具体应用,这些知识可以提高安全性和安全性,节约能源,保护环境,并提高消耗自然资源的效率。 它还将导致智能系统能够在正确的时刻做出正确的决定。最终,这将导致自我维持和可持续的系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yacout, Soumaya其他文献

Bidirectional handshaking LSTM for remaining useful life prediction
  • DOI:
    10.1016/j.neucom.2018.09.076
  • 发表时间:
    2019-01-05
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Elsheikh, Ahmed;Yacout, Soumaya;Ouali, Mohamed-Salah
  • 通讯作者:
    Ouali, Mohamed-Salah
Optimal preventive maintenance policy based on reinforcement learning of a fleet of military trucks
  • DOI:
    10.1007/s10845-016-1237-7
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Barde, Stephane R. A.;Yacout, Soumaya;Shin, Hayong
  • 通讯作者:
    Shin, Hayong
Design for Six Sigma through collaborative multiobjective optimization
  • DOI:
    10.1016/j.cie.2010.09.015
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Baril, Chantal;Yacout, Soumaya;Clement, Bernard
  • 通讯作者:
    Clement, Bernard

Yacout, Soumaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yacout, Soumaya', 18)}}的其他基金

Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Ultra-wide Band mm-Wave Components Design Based on Machine Learning Techniques
基于机器学习技术的超宽带毫米波组件设计
  • 批准号:
    523525-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic fault and performance loss detection of industrial chlorine electrolysis reactors at R2
R2 工业氯电解反应器的自动故障和性能损失检测
  • 批准号:
    515838-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
  • 批准号:
    121700-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
  • 批准号:
    121700-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
  • 批准号:
    121700-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
  • 批准号:
    RGPIN-2020-04075
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Behavior-Driven Testing of Big Data Exploration Tools
职业:大数据探索工具的行为驱动测试
  • 批准号:
    2141506
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Leveraging Big Data and Deep Learning to Develop Next Generation Decision Support Tools to Improve Glycemic Outcomes in Type 1 Diabetes
利用大数据和深度学习开发下一代决策支持工具以改善 1 型糖尿病的血糖结果
  • 批准号:
    10231944
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Linking Digital Payments to Crime Using Big Data Machine Learning Tools
使用大数据机器学习工具将数字支付与犯罪联系起来
  • 批准号:
    NI210100002
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    National Intelligence and Security Discovery Research Grants
Leveraging Big Data and Deep Learning to Develop Next Generation Decision Support Tools to Improve Glycemic Outcomes in Type 1 Diabetes
利用大数据和深度学习开发下一代决策支持工具以改善 1 型糖尿病的血糖结果
  • 批准号:
    10611369
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
  • 批准号:
    RGPIN-2020-04075
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Leveraging Big Data and Deep Learning to Develop Next Generation Decision Support Tools to Improve Glycemic Outcomes in Type 1 Diabetes
利用大数据和深度学习开发下一代决策支持工具以改善 1 型糖尿病的血糖结果
  • 批准号:
    10400580
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Analytical tools to utilize livestock big data for improving meat quality
利用牲畜大数据改善肉类质量的分析工具
  • 批准号:
    20K06383
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Seeing the big picture: novel imaging tools to study spatial coordination of signalling processes in plants and algae
纵观全局:研究植物和藻类信号过程空间协调的新型成像工具
  • 批准号:
    2439762
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了