Real-time Temporal Logic-based Planning for Multi-agent Autonomous Systems in Partially-known and Uncertain Environments

部分已知和不确定环境中基于时态逻辑的实时多智能体自治系统规划

基本信息

  • 批准号:
    RGPIN-2022-03563
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Autonomous systems, such as self-driving cars or unmanned aerial vehicles (UAVs), are seen as the solution for major problems in transportation (e.g, reducing congestion and emissions) and in reducing risk for humans in safety-critical tasks such as firefighting and search-and-rescue. The self-driving car industry has seen over US$200 billion invested in it since 2010, and is expected to be a multi-billion dollar industry by 2045 [31], as is the UAV industry [3]. Currently however, successful applications of these systems are mostly limited to simple, isolated environments such as caged-off warehouses, rural airspace, and dedicated traffic routes. Real-world, especially urban environments remain uncertain due human-operated systems and constantly evolve in ways not seen prior to deployment. In such complex environments, autonomous systems are far from capable of fully autonomous operation, as seen by the recent spate of high-profile accidents involving self-driving cars which led the US National Highway Traffic Safety Administration (NHTSA) to open an investigation in August 2021. The long-term goal of my proposed research program is to enable autonomous systems to plan their motion in such uncertain, evolving, and a priori unknown environments while satisfying complex objectives. These could include requirements that are in: 1) space (e.g., avoiding a no-fly zone), 2) time (e.g., forest-fire-fighting UAVs surveilling 2 high-risk areas every 5 minutes), 3) reactive (e.g., fire-fighting UAVs must clear out of area where an aircraft will drop water on within the next 2 minutes), and 4) across multiple agents (e.g., in areas with limited visibility due to smoke, at least 2 UAVs should confirm the presence of additional fires). It is a challenge to both concisely and correctly specify such objectives in a mathematically sound manner and then to automatically generate motion plans for the autonomous systems to carry out these objectives in complex real-world environments. This program will aim to address these technical challenges by making fundamental advances in the use of formal (logic-based) specification languages for capturing such operating requirements, and in optimization-based methods for motion planning methods that satisfy these formal specifications. A particular focus will be on developing efficient methods that run online in real-time and allow for co-ordination between multiple autonomous systems carrying out these tasks in challenging environments. While Canada has a fast-growing robotics industry, it ranked 12th in KPMG's 2020 Autonomous Vehicle Readiness Index, trailing other countries in technology and innovation. This research program will make fundamental advances in the underpinnings of decision-making for autonomous systems for real-world systems and will train students and researchers to be equipped to lead in fast-growing autonomous system sectors, including robotics (ground and aerial) and the automotive industry.
自动驾驶汽车或无人驾驶飞行器(uav)等自主系统被视为解决交通运输主要问题(例如减少拥堵和排放)以及降低人类在消防和搜救等安全关键任务中的风险的解决方案。自2010年以来,自动驾驶汽车行业已经获得了超过2000亿美元的投资,预计到2045年将成为一个数十亿美元的行业,无人机行业也是如此。然而,目前这些系统的成功应用大多局限于简单、孤立的环境,如封闭的仓库、农村空域和专用交通路线。现实世界,尤其是城市环境,由于人类操作系统的存在,仍然存在不确定性,并且不断以部署之前未见过的方式发展。在如此复杂的环境中,自动驾驶系统远不能完全自主运行,正如最近一系列涉及自动驾驶汽车的引人注目的事故所示,这些事故导致美国国家公路交通安全管理局(NHTSA)于2021年8月展开调查。我提出的研究计划的长期目标是使自主系统能够在不确定、不断发展和先验未知的环境中规划其运动,同时满足复杂的目标。这些要求可能包括:1)空间(例如,避开禁飞区),2)时间(例如,森林消防无人机每5分钟监视2个高风险区域),3)反应性(例如,消防无人机必须在接下来的2分钟内离开飞机将洒水的区域),以及4)跨越多个agent(例如,在烟雾能见度有限的区域,至少2架无人机应确认存在额外的火灾)。如何以数学上合理的方式简洁、正确地指定这些目标,然后为自治系统自动生成运动计划,以在复杂的现实环境中执行这些目标,是一个挑战。该计划旨在解决这些技术挑战,通过使用形式(基于逻辑的)规范语言来捕获此类操作需求,并在满足这些形式规范的运动规划方法的基于优化的方法中取得基本进展。一个特别的重点将是开发在线实时运行的有效方法,并允许在具有挑战性的环境中执行这些任务的多个自治系统之间进行协调。虽然加拿大的机器人产业发展迅速,但在毕马威2020年自动驾驶汽车准备指数中,加拿大排名第12位,在技术和创新方面落后于其他国家。该研究项目将在现实系统的自主系统决策基础方面取得根本性进展,并将培养学生和研究人员,使他们能够在快速增长的自主系统领域(包括机器人(地面和空中)和汽车行业)中处于领先地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pant, YashVardhan其他文献

Pant, YashVardhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pant, YashVardhan', 18)}}的其他基金

Real-time Temporal Logic-based Planning for Multi-agent Autonomous Systems in Partially-known and Uncertain Environments
部分已知和不确定环境中基于时态逻辑的实时多智能体自治系统规划
  • 批准号:
    DGECR-2022-00092
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating the Temporal Dynamics of Notch Signalling in Real-Time
实时阐明陷波信号的时间动态
  • 批准号:
    558864-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Real-time Temporal Logic-based Planning for Multi-agent Autonomous Systems in Partially-known and Uncertain Environments
部分已知和不确定环境中基于时态逻辑的实时多智能体自治系统规划
  • 批准号:
    DGECR-2022-00092
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Elucidating the Temporal Dynamics of Notch Signalling in Real-Time
实时阐明陷波信号的时间动态
  • 批准号:
    558864-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Creating the Gold Standard Air Quality and Exposure Monitoring Tool for Train Stations and Train-Care Depots, using High Spatial & Temporal Resolution Data, Real-time Automated Outputs, Digital Twins and Dispersion-Modeling using Advanced Ray-Tracing
使用 High Spatial 为火车站和列车维修站创建黄金标准空气质量和暴露监测工具
  • 批准号:
    10002510
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Small Business Research Initiative
Real-time sign language recognition system inspired by spatio-temporal characteristics of the visual nervous system
受视觉神经系统时空特征启发的实时手语识别系统
  • 批准号:
    19K12916
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: High-Dimensional Spatio-Temporal Data Science for a Resilient Power Grid: Towards Real-Time Integration of Synchrophasor Data
合作研究:弹性电网的高维时空数据科学:同步相量数据的实时集成
  • 批准号:
    1934675
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-Dimensional Spatio-Temporal Data Science for a Resilient Power Grid: Towards Real-Time Integration of Synchrophasor Data
合作研究:弹性电网的高维时空数据科学:同步相量数据的实时集成
  • 批准号:
    1934766
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Statistically Principled Real-Time Detection of Anomalies for Temporal Network Data
ATD:协作研究:统计原理的时态网络数据异常实时检测
  • 批准号:
    1830274
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Spatio-temporal dynamic analysis of pollen crowd using a real-time pollen monitor
利用实时花粉监测仪进行花粉群时空动态分析
  • 批准号:
    18J12315
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ATD: Collaborative Research: Statistically Principled Real-Time Detection of Anomalies for Temporal Network Data
ATD:协作研究:统计原理的时态网络数据异常实时检测
  • 批准号:
    1830247
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了