Collaborative Research: High-Dimensional Spatio-Temporal Data Science for a Resilient Power Grid: Towards Real-Time Integration of Synchrophasor Data

合作研究:弹性电网的高维时空数据科学:同步相量数据的实时集成

基本信息

  • 批准号:
    1934675
  • 负责人:
  • 金额:
    $ 18.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The project will establish an Institute at Arizona State University (ASU) with Texas A&M (TAMU) that considers the electric power grid and examines critical real-time decision-making by developing core data-driven science methods and applications. This is motivated by the modern electric power system which is experiencing heightened unpredictability from increasing demand for renewable energy, efficiency, and resilience. To address this, industry stakeholders are deploying GPS-synchronized phasor measurement units (PMUs), or synchrophasors, that provide direct measurements of voltage and current phasors with high temporal granularity. However, the potential real-time situational awareness enabled by these measurements has been impeded by the massive scale of the time-series PMU data and have limited its use to passive, post-event forensics. The Institute meets this need for PMU-based real-time decision-making by examining five critical problems: (i) ensure data quality against bad, missing, or stale data; (ii) exploit the fine granularity of PMU data to track real-time changes in network parameters; (iii) detect, identify, localize, and visualize oscillation and failure events; (iv) assess and visualize cybersecurity threats and countermeasures specific to PMUs; and (v) create synthetic PMU datasets for testing and validation. The Institute leverages the PIs' synergistic multidisciplinary background in information sciences and statistics, machine learning, data visualization, cybersecurity, and power systems. The team will apply state-of-the-art techniques including hidden Markov models, LSTM neural networks, graphical models, errors-in-variables models, graph signal processing, adversarial examples, low-dimensional feature extraction, and constrained GANs. Another key research focus is the development of visual analytics for high-granularity spatio-temporal PMU data to enable improved operator review and decision-making. These innovations will be fueled by massive PMU datasets accessible to the PIs.This Phase I institute has the potential to tip PMUs from a promising-but-mostly-underused resource into an essential part of power system best practices. The data science outcomes will impact application domains such as transportation networks, smart buildings, and manufacturing, each of which increasingly faces high-dimensional streaming data challenges. The PIs will disseminate their research to both academic and industry stakeholders and will continue their outreach on teaching AI and machine learning (ML) modules to underrepresented high school students. Finally, the multi-disciplinary strength of this institute lends itself naturally to a larger, integrated, and comprehensive Phase II institute focused on data-intensive research for critical infrastructure networks.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity. This effort is co-funded by the Division of Electrical, Communications and Cyber Systems within the Directorate for Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将在亚利桑那州立大学(ASU)与德克萨斯A&M (TAMU)建立一个研究所,该研究所将考虑电网,并通过开发核心数据驱动的科学方法和应用来检查关键的实时决策。这是由于对可再生能源、效率和弹性的需求不断增加,现代电力系统的不可预测性正在增强。为了解决这个问题,行业利益相关者正在部署gps同步相量测量单元(pmu),或同步相量,提供高时间粒度的电压和电流相量的直接测量。然而,通过这些测量实现的潜在实时态势感知受到了大量时间序列PMU数据的阻碍,并限制了其用于被动的事后取证。该研究所通过审查五个关键问题来满足这种基于管理单元的实时决策的需求:(i)确保数据质量,防止数据损坏、丢失或过时;(ii)利用PMU数据的细粒度来跟踪网络参数的实时变化;(iii)检测、识别、定位和可视化振荡和故障事件;(iv)评估和可视化针对pmu的网络安全威胁和对策;(v)创建用于测试和验证的综合PMU数据集。该研究所利用pi在信息科学和统计学、机器学习、数据可视化、网络安全和电力系统方面的协同多学科背景。该团队将应用最先进的技术,包括隐马尔可夫模型、LSTM神经网络、图形模型、变量误差模型、图形信号处理、对抗示例、低维特征提取和约束gan。另一个关键的研究重点是开发高粒度时空PMU数据的可视化分析,以改进操作员的审查和决策。这些创新将由pi访问的大量PMU数据集推动。这个第一阶段的研究所有可能将pmu从一个有前途但大多未充分利用的资源转变为电力系统最佳实践的重要组成部分。数据科学的成果将影响交通网络、智能建筑和制造业等应用领域,每个领域都日益面临高维流数据的挑战。pi将向学术和行业利益相关者传播他们的研究成果,并将继续向代表性不足的高中生教授人工智能和机器学习(ML)模块。最后,该研究所的多学科优势自然使其成为一个更大、综合、全面的第二阶段研究所,专注于关键基础设施网络的数据密集型研究。该项目是美国国家科学基金会“利用数据革命(HDR)大创意”活动的一部分。这项工作是由工程局的电气、通信和网络系统司共同资助的。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generative Adversarial Networks-Based Synthetic PMU Data Creation for Improved Event Classification
基于生成对抗网络的综合 PMU 数据创建以改进事件分类
Synthetic Dynamic PMU Data Generation: A Generative Adversarial Network Approach
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Le Xie其他文献

Robust and real-time guidewire simulation based on Kirchhoff elastic rod for vascular intervention training
基于基尔霍夫弹性杆的鲁棒实时导丝模拟用于血管介入训练
Multi-scale Integration of Physics-Based and Data-Driven Models in Power Systems
电力系统中基于物理和数据驱动的模型的多尺度集成
Review on the interlimb neural coupling and its potential usage in walking rehabilitation
肢间神经耦合及其在步行康复中的潜在应用综述
Stress changes of lateral collateral ligament at different knee flexion with or without displaced movements: a 3-dimensional finite element analysis.
不同膝关节屈曲时外侧副韧带的应力变化,有或没有移位运动:3维有限元分析。
Engineering IT-Enabled Sustainable Electricity Services
工程 IT 支持的可持续电力服务
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Ilić;Le Xie;Qixing Liu
  • 通讯作者:
    Qixing Liu

Le Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Le Xie', 18)}}的其他基金

Workshop: Towards Carbon-neutral Electricity and Mobility: The Infrastructure Challenges and Opportunities; Houston, Texas; 28 February - 1 March 2022
研讨会:迈向碳中和电力和交通:基础设施的挑战和机遇;
  • 批准号:
    2203357
  • 财政年份:
    2022
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
RAPID: A Cross-Infrastructure Data-driven Approach to Modeling and Simulation of the 2021 Texas Power Outage
RAPID:跨基础设施数据驱动的 2021 年德克萨斯州停电建模和仿真方法
  • 批准号:
    2130945
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
A Cross-Domain Data-driven Approach to Analyzing and Predicting the Impact of COVID-19 on the U.S. Electricity Sector
跨域数据驱动方法分析和预测 COVID-19 对美国电力行业的影响
  • 批准号:
    2035688
  • 财政年份:
    2020
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
NSF Workshop on Real-time Learning and Decision Making of Dynamical Systems. To Be Held at NSF, February 12-13, 2018.
NSF 动态系统实时学习和决策研讨会。
  • 批准号:
    1818201
  • 财政年份:
    2018
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Precision Reserves from Flexible Loads: An Online Reinforcement Learning Approach
EAGER:实时:灵活负载的精度储备:在线强化学习方法
  • 批准号:
    1839616
  • 财政年份:
    2018
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
RAPID: Powering through the hurricane: self-organizing power electronics intelligence at the network edge
RAPID:渡过飓风:网络边缘的自组织电力电子智能
  • 批准号:
    1760554
  • 财政年份:
    2017
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Microgrid Interconnections Control via Voltage Angle Droop Methods
通过电压角下垂方法进行微电网互连控制
  • 批准号:
    1611301
  • 财政年份:
    2016
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
EAGER: A Dynamical Systems Approach to Modeling and Controlling Responsive Demand in Electric Power Systems
EAGER:电力系统响应需求建模和控制的动态系统方法
  • 批准号:
    1546682
  • 财政年份:
    2015
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Capacity Building: Collaborative Research: Integrated Learning Environment for Cyber Security of Smart Grid
能力建设:协作研究:智能电网网络安全的集成学习环境
  • 批准号:
    1303378
  • 财政年份:
    2013
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberSEES: Coupon Incentive-based Risk Aware Demand Response in Smart Grid
合作研究:Cyber​​SEES:智能电网中基于优惠券激励的风险意识需求响应
  • 批准号:
    1331863
  • 财政年份:
    2013
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402729
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402728
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
  • 批准号:
    2310974
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
  • 批准号:
    2319711
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
  • 批准号:
    2403552
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
  • 批准号:
    2319712
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了