Public Safety Applications of Network Activity Data

网络活动数据的公共安全应用

基本信息

  • 批准号:
    576812-2022
  • 负责人:
  • 金额:
    $ 10.41万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Proactive public safety can be facilitated by gathering data pertaining to adverse events in a city, and predictive models can use this data to recognize and mitigate patterns that lead to injuries and death. Our objective is to create low-cost, effective public safety systems by applying analytics and machine learning (ML) to anonymized network activity data to detect adverse events. As people use their apps, their smart phones interact with the cellular network and in doing so they indicate their location. Many applications depend on user mobility information extracted from this location data, typically requiring that a user opt-in to share their location data. In this project we are interested in models that use network activity data that preserves individual privacy, and that do not require user mobility data. We focus on ML prediction and risk assessment for adverse events in three use cases: Vision Zero which attempts to reduce pedestrian and bicyclist fatalities to zero; Fire and emergency response; and 911 call dispatching.The project will investigate and develop analytics and ML algorithms that process network activity data combined with relevant city and other data to predict and help respond to adverse events that occur at random times and places. We wish to predict these events over a range of geographic areas and time intervals, as well as to characterize these by type, severity, and other attributes. Thus, we are interested in predicting the occurrence and severity of pedestrian and cyclist crash events. We are also interested in predicting the occurrence of fires and their types and impacts in various districts of a city under various weather conditions. For 911 calls, our ML models learn patterns of event occurrences and their types and severity to help improve response to emergency calls by automatically selecting and providing relevant information to dispatchers and first responders. By working with data from several Canadian cities, our project will help to better public safety through improved planning, timeliness, accuracy, and quality of response.
通过收集与城市不良事件有关的数据可以促进主动的公共安全,预测模型可以使用这些数据来识别和减轻导致伤害和死亡的模式。 我们的目标是通过将分析和机器学习(ML)应用于匿名网络活动数据来检测不良事件,从而创建低成本、有效的公共安全系统。当人们使用他们的应用程序时,他们的智能手机与蜂窝网络交互,并在此过程中指示他们的位置。许多应用依赖于从该位置数据提取的用户移动性信息,通常要求用户选择加入以共享其位置数据。在这个项目中,我们感兴趣的模型,使用网络活动数据,保护个人隐私,不需要用户的移动数据。我们专注于三个用例中不良事件的ML预测和风险评估:Vision Zero,试图将行人和骑自行车者的死亡人数减少到零;火灾和紧急响应;该项目将研究和开发分析和机器学习算法,处理网络活动数据,结合相关城市和其他数据,以预测和帮助应对随机时间发生的不良事件,地我们希望在一系列地理区域和时间间隔内预测这些事件,并通过类型,严重程度和其他属性来描述这些事件。因此,我们有兴趣预测行人和骑自行车的碰撞事件的发生和严重程度。 我们也有兴趣预测火灾的发生及其类型和影响,在不同的天气条件下,在一个城市的各个地区。 对于911呼叫,我们的ML模型学习事件发生的模式及其类型和严重程度,通过自动选择并向调度员和第一响应者提供相关信息来帮助改善对紧急呼叫的响应。通过使用来自几个加拿大城市的数据,我们的项目将通过改进规划、及时性、准确性和响应质量来帮助改善公共安全。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LeonGarcia, AlbertoNA其他文献

LeonGarcia, AlbertoNA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LeonGarcia, AlbertoNA', 18)}}的其他基金

NSERC CREATE for Network Softwarization
NSERC CREATE 用于网络软件化
  • 批准号:
    498002-2017
  • 财政年份:
    2022
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Collaborative Research and Training Experience

相似海外基金

ELOQUENCE - Multilingual and Cross-cultural interactions for context-aware, and bias-controlled dialogue systems for safety-critical applications
ELOQUENCE - 用于安全关键应用的上下文感知和偏差控制对话系统的多语言和跨文化交互
  • 批准号:
    10092660
  • 财政年份:
    2024
  • 资助金额:
    $ 10.41万
  • 项目类别:
    EU-Funded
Estimating Risk Measures, with Applications to Finance and Nuclear Safety
评估风险措施,并应用于金融和核安全
  • 批准号:
    2345330
  • 财政年份:
    2024
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Enhancing safety of liquid and vaporised hydrogen transfer technologies in public areas for mobile applications
增强公共区域移动应用液态和汽化氢传输技术的安全性
  • 批准号:
    10063519
  • 财政年份:
    2023
  • 资助金额:
    $ 10.41万
  • 项目类别:
    EU-Funded
ELVHYS - Enhancing safety of Liquid and Vaporised HYdrogen transfer technologies in public areas for mobile applicationS
ELVHYS - 增强移动应用公共区域液态和汽化氢传输技术的安全性
  • 批准号:
    10070592
  • 财政年份:
    2023
  • 资助金额:
    $ 10.41万
  • 项目类别:
    EU-Funded
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Security and Safety in Environmental Perception Systems with Applications to Autonomous Systems
环境感知系统的安全性及其在自治系统中的应用
  • 批准号:
    DGECR-2022-00115
  • 财政年份:
    2022
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Discovery Launch Supplement
Security and Safety in Environmental Perception Systems with Applications to Autonomous Systems
环境感知系统的安全性及其在自治系统中的应用
  • 批准号:
    RGPIN-2022-05306
  • 财政年份:
    2022
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Discovery Grants Program - Individual
Bioanalytical developments and applications to drinking water safety
饮用水安全生物分析的发展和应用
  • 批准号:
    RGPIN-2017-05857
  • 财政年份:
    2022
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Discovery Grants Program - Individual
Flow-induced sound and vibrations with applications to pipeline safety and mitigation of ocean noise pollution
流动引起的声音和振动在管道安全和减轻海洋噪声污染中的应用
  • 批准号:
    RGPIN-2020-06001
  • 财政年份:
    2022
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了